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Abstract: Quadrotor UAV carrying a payload with a cable can be a prominent setup for aerial transportation. However,
it is challenging for the suspended load system to navigate through tunnel-like obstacles if the vertical gap is narrower
than the length of the cable. We aim to resolve this problem by adopting the pulley mechanism which controls the cable
length. This paper presents a model predictive control based real-time trajectory generation algorithm for a quadrotor
with its load suspended from a pulley, or the quadrotor-pulley system. We design a cost function that can be generally ap-
plied for avoiding obstacles with rectangular surfaces. Using the cost function, an optimal control problem is formulated,
which is then solved by implementing model predictive control algorithm with sequential quadratic programming solver.
We employ the state-of-the-art real-time iteration scheme to promote computational efficiency of the algorithm. The pre-
sented algorithm is demonstrated with simulations, where trajectories for the quadrotor-pulley system were successfully
generated. Collision-free trajectories through tunnels with various heights and lengths were generated in real-time, thus
validating the robustness of the algorithm.
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1. INTRODUCTION

1.1 Related Works
Connecting the quadrotor UAV and its load with a

cable is a well-known method for aerial transportation.
Such system, which is also known as the “suspended
load” system, retains the quadrotor’s agile behavior in
terms of attitude control since the moments of inertia are
unchanged. Furthermore, the maximum load transporta-
tion capability could be utilized because no heavy struc-
tures need to be added to the quadrotor.

Geometric controller has been proposed for the sus-
pended load system. In [1], the authors have developed a
dynamical model of the differentially flat hybrid system
and designed a geometric controller. The robust tracking
performance of the controller was verified in [2, 3].

Trajectory generation algorithms for the suspended
load system have also been studied by many researchers.
Model predictive control (MPC) was shown to be an
effective methodology for real-time obstacle avoidance
in [4], where its performance was verified with experi-
ments. In [5,6], waypoint tracking performance of linear-
quadratic regulator and MPC were compared. The au-
thors of [7] employed mixed integer quadratic program-
ming to generate trajectories through narrow gaps. Direct
collocation was performed on the suspended load sys-
tem, and a method of reformulating the obstacle avoid-
ance constraints was presented in [8]. A novel dynam-
ical model was introduced in [9], where the trajectory
optimization problem was posed as a mathematical pro-
gram with complementarity constraints. In [10], dynam-
ical model of the suspended load system was simplified
by considering the control delay, and a real-time optimal
trajectory generation algorithm was proposed.

Still, the previous works did not address tunnel-like
structures that constrain the position of the load and the
quadrotor in the vertical axis. In [7, 10], the quadrotor

“swings” its load to a large angle as it moves through a
window. For the system to pass through a tunnel, the ca-
ble should remain slanted inside the tunnel, thus shorten-
ing the vertical distance between the load and the quadro-
tor. However, we consider such trajectories to be infeasi-
ble, since it requires hard acceleration throughout a long
time period. The authors of [8] have simulated collision-
free trajectories through a tunnel by designating a way-
point at which the load angle must be larger than π/4,
and by exploiting the hybrid modes of the system. Such
aggressive maneuvers are unlikely to be reproduced in
experiments where physical limitations on the quadrotor
should be considered. Moreover, the methods are not ap-
plicable for dynamic environments, since waypoint des-
ignation and specific parameter settings that depend on
obstacle configurations are required.

To overcome the difficulty of navigating through
tunnel-like obstacles, we adopt the pulley mechanism
proposed in [11]. Although the authors of [11] have suc-
cessfully designed a geometric controller for a quadro-
tor with its load suspended from a pulley (hereinafter re-
ferred to as the “quadrotor-pulley system”), methods for
the system’s trajectory generation are yet to be proposed
to the best of our knowledge. In this paper, we have em-
ployed MPC to generate the quadrotor-pulley system’s
trajectory, and together with the cost function for tunnel-
like obstacle avoidance, the presented algorithm has suc-
cessfully generated collision-free trajectories through the
obstacles in real-time.

1.2 Contribution
The main contributions of this paper are summarized

as follows:
1. A real-time trajectory generation algorithm for the
quadrotor-pulley system is proposed for the first time, to
the best of the authors’ knowledge.
2. A cost function which can be generally applied for
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avoiding obstacles with rectangular surfaces is proposed.
3. The presented algorithm was validated with simula-
tions in which the system was able to successfully navi-
gate through narrow tunnels.

2. DYNAMICAL MODEL

The dynamical model of the quadrotor-pulley system
was derived in [11]. An additional actuator connected to
the pulley alters the cable length, thus allowing the sus-
pended load system to navigate through tight passages
without aggressive maneuvers. The system may be in-
terpreted as a hybrid model with its dynamics switch-
ing when the tension in the cable becomes zero or when
the slack cable becomes taut. In this study, we assume
that the cable remains taut in all circumstances because
the pulley mechanism is expected to minimize aggres-
sive maneuvers when navigating through obstacles. Fur-
thermore, the radius of the pulley is assumed to be much
smaller than the length of the cable.

The coordinate system and variables of the quadrotor-
pulley system are depicted in Fig. 1, and the nomencla-
ture is presented in Table 1.

Fig. 1. Quadrotor-pulley system and its variables

The equations of motion for the system are written as

ẋL = vL, (1)
ṗ = ω × p, (2)

Ṙ = RΩ̂, (3)

mQLω̇ = −p× fRe3 − 2mQL̇ω, (4)

IQΩ̇ = M − τep − Ω× IQΩ, (5)

D

[
v̇L + ge3

L̈

]
+H =

[
(p · fRe3) p

τ

]
, (6)

where matrix D and vector H are defined as

D =

[
(mQ +mL) I3 −mQp

mLrp
T Ip/r

]
,

H =

[
mQL (ṗ · ṗ) p

0

]
.

We define the state vector and the input vector as

x (t) =
[
xT
L, p

T ,ΦT , vTL , ω
T ,ΩT , L, L̇

]T
∈ R20 and

Table 1. Nomenclature

B Body-fixed coordinate frame
I Inertial coordinate frame
mQ,mL ∈ R Mass of the quadrotor and the sus-

pended load
IQ ∈ R3×3 Inertia matrix of the quadrotor
Ip ∈ R Moment of inertia of the pulley
r ∈ R Radius of the pulley
R ∈ SO (3) Rotation matrix from B to I
Φ ∈ R3 Attitude of the quadrotor described

with Euler angle conventions
Ω ∈ R3 Angular velocity of the quadrotor

expressed in B
ω ∈ R3 Angular velocity of the suspended

load expressed in I
xQ, xL ∈ R3 Position of the center of mass of the

quadrotor and suspended load in I
vQ, vL ∈ R3 Velocity of the center of mass of the

quadrotor and suspended load in I
f ∈ R Total thrust of the quadrotor
M ∈ R3 Moment input for the quadrotor ex-

pressed in B
τ ∈ R Torque input for the pulley
p ∈ S2 Unit vector from the quadrotor to

the suspended load expressed in I
L ∈ R Length of the cable, which is al-

tered by the pulley mechanism
e1, e2, e3 ∈ R3 Unit vectors along the x, y, z direc-

tions of I
ep ∈ R3 Unit vector along the pulley’s shaft

expressed in B

u (t) =
[
f,MT , τ

]T ∈ R5, respectively. Compared to
the suspended load system without the pulley mechanism
in [1], the length of the cable L and its time derivative
L̇ are added to the state vector, and magnitude of torque
acting on the pulley τ is appended to the input vector.

3. TRAJECTORY GENERATION

The objective of our research is to develop a real-time
trajectory generation algorithm so that the quadrotor-
pulley system could navigate through tunnel-like obsta-
cles and reach the desired configuration. We employ
MPC for its effectiveness in real-time trajectory planning
as shown in [4–6, 10]. Formulation of a nonlinear pro-
gramming problem (NLP) from an optimal control prob-
lem (OCP) is introduced in section 3.1. In section 3.2, we
present the cost function which enables collision avoid-
ance from obstacles with rectangular surfaces. The se-
quential quadratic programming (SQP) algorithm used to
solve the NLP is discussed in section 3.3.

3.1 NLP Formulation
We apply direct multiple shooting to an OCP to for-

mulate a NLP [12]. The method divides the time horizon
into N shooting intervals [t0, t1, ..., tN ]. At each discrete
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time point tk, the state vector is defined as xk = x (tk)
for k = 0, 1, ..., N , and the input vector is defined as
uk = u (tk) for k = 0, 1, ..., N − 1. The NLP is de-
scribed as

min
xk,uk

N−1∑
k=0

1

2
∥hk (xk, uk)∥2W +

1

2
∥hN (xN )∥2WN

(7)

s.t. x0 = x̂0, (8)
xk+1 = F (xk, uk) , k = 0, ..., N − 1, (9)
rk ≤ rk (xk, uk) ≤ rk, k = 0, ..., N − 1, (10)
rN ≤ rN (xN ) ≤ rN . (11)

Eq. (7) is the cost function of the optimization prob-
lem. From Eqs. (1) ∼ (6), we obtain a continuous-time
differential equation ẋ (t) = f (x (t) , u (t)) represent-
ing the system dynamics, which is discretized into the
form xk+1 = F (xk, uk) with Runge-Kutta fourth-order
method. The discretized dynamics of the system is con-
sidered as an equality constraint in Eq. (9). Eq. (8) en-
forces the state x0 to be equal to the measurement of the
current state x̂0, and Eqs. (10) ∼ (11) represent the in-
equality constraints of the NLP.

3.2 Cost Function and Constraints
Our objective is divided into two subtasks:

1. The UAV should reach the desired configuration.
2. The UAV should avoid collision with the obstacles.

The first subtask is easily accomplished by setting the
cost function J1 as

J1 =
N−1∑
k=0

1

2

([
xk − xdes

uk − udes

])T

Q1

([
xk − xdes

uk − udes

])
+

1

2
(xN − xdes)

T
L (xN − xdes) ,

(12)

where xdes is the desired configuration, and udes =

[(mQ +mL) g, 0, 0, 0,−mLrg]
T is the input that con-

trols the quadrotor-pulley system to hover at a fixed con-
figuration.

For the subtask of obstacle avoidance, we model
a tunnel-like obstacle as two parallel two-dimensional
plates of finite lengths and widths, as illustrated in Fig.
2. Although an inequality constraint could be formulated
using state variables xL, p, and L to bound the verti-
cal position of the quadrotor-pulley system to be in be-
tween the two plates, such constraint should only be ap-
plied when the system is inside the tunnel. The constraint
should be applied conditionally, depending on the posi-
tion of the quadrotor-pulley system and the tunnel. Un-
fortunately, NLP solvers including SQP algorithms rarely
support conditional constraints. Even though represent-
ing the obstacles as hard inequality constraints would en-
sure a safe flight without collision, its implementation
overcomplicates the problem.

An alternative methodology for obstacle avoidance is
to use an additional cost function that discourages the

Fig. 2. A tunnel-like obstacle with xo,1 = 2, xo,2 =
4, yo,1 = −0.5, yo,2 = 0.5, zo,1 = 1.2, zo,2 = 1.8

system from getting dangerously close to the obstacles.
The idea behind this methodology is to design a repul-
sive potential-like scalar field with its values exponen-
tially increasing as the system approaches the obstacles.
By adding this potential-like cost function to Eq. (12), the
optimal trajectory of the quadrotor-pulley system is en-
couraged to keep a safe distance from the obstacles. The
effectiveness of using a cost function for obstacle avoid-
ance and thus interpreting the obstacles as soft constraints
has been validated with experiments in [4].

We define a plate-like obstacle Obs1 and the scalar
field generated by the obstacle λObs1 as

Obs1 ≡ {(x, y, zo,1) | (x, y) ∈ [xo,1, xo,2]× [yo,1, yo,2]} ,

λObs1 (x, y, z) =exp

{
−
(
x− (xo,1 + xo,2) /2

(xo,2 − xo,1) /β

)α}
exp

{
−
(
y − (yo,1 + yo,2) /2

(yo,2 − yo,1) /β

)α}
exp

{
−γ (z− zo,1)

2
}
,

(13)

where xo,1, xo,2 and yo,1, yo,2 represent the configuration
of Obs1 in the x-axis and y-axis respectively, and zo,1
represent the position of Obs1 in the vertical axis. α, β,
and γ are parameters in R+.

The potential-like field around a tunnel which consists
of two plate-like obstacles Obs1 and Obs2 is obtained
by summing the scalar fields generated by each of the
obstacles,

λ (x, y, z) = λObs1 (x, y, z) + λObs2 (x, y, z) , (14)

where Obs2 is defined as

Obs2 ≡ {(x, y, zo,2) | (x, y) ∈ [xo,1, xo,2]× [yo,1, yo,2]} .

Fig. 3 visualizes the potential field in Eq. (14). The
aforementioned idea of conditional constraints is well
reflected in the potential field. Conditionality of the
potential field is provided by the first two exponential
factors of Eq. (13) in the sense of soft-thresholding.
Product of the two factors rapidly converges to zero as
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the quadrotor-pulley system moves away from the ob-
stacle ((x, y) /∈ [xo,1, xo,2] × [yo,1, yo,2]), and main-
tains a value near 1 if the system is inside the tunnel
((x, y) ∈ [xo,1, xo,2]× [yo,1, yo,2]).

(a) Potential field at y = 0 (b) Potential field at x = 3

Fig. 3. Potential field generated by a tunnel-
like obstacle, where (xo,1, xo,2, yo,1, yo,2, zo,1, zo,2) =
(2, 4,−0.5, 0.5, 1.2, 1.8), α = 8, β = 1.6, and γ = 50

Larger values of α make the product of the first two
factors of Eq. (13) quickly approach 1 as the quadrotor-
pulley system enters the tunnel, therefore exhibiting a
behavior similar to that of hard-thresholding. Parame-
ter β effects the interval of convergence, and by using
smaller values of β, the potential function would maintain
a nonzero value further outside the region [xo,1, xo,2] ×
[yo,1, yo,2]. The “safe distance” between the system and
the plate-like obstacle is controlled with parameter γ. Us-
ing larger values of γ allows the system to maneuver
closer to the obstacle.

The potential function presented in Eq. (13) could
be utilized to model rectangular surfaces of three-
dimensional obstacles, and is generally applicable for ob-
stacle avoidance tasks in OCPs.

The whole quadrotor-pulley system including the load,
cable, and the quadrotor itself should avoid colliding
with obstacles. Therefore, we define the internal divi-
sion points of the cable at a discrete time point tk as
xi
sys (tk) = xL (tk)− i

10L (tk) p (tk) for i = 0, 1, ..., 10.
Finally, we formulate the cost function for tunnel-like ob-
stacle avoidance as

J2 =
N−1∑
k=0

1

2
ΛT (xk)Q2Λ (xk) , (15)

where Λ (xk) is defined using the potential field in Eq.
(14) as

Λ (xk) = [λ
(
x0
sys (tk)

)
, λ

(
x1
sys (tk)

)
,...,

λ
(
x10
sys (tk)

)
]T .

An inequality constraint shown in Eq. (16) is applied
to bound the cable length within a reasonable value.

L ≤ L (tk) ≤ L. (16)

Utilizing Eqs. (12), (15), and (16), The NLP is refor-

mulated as

min
xk,uk

J1 + J2, (17)

s.t. x0 = x̂0, (18)
xk+1 = F (xk, uk) , k = 0, ..., N − 1, (19)

L ≤ L (tk) ≤ L, k = 0, ..., N − 1. (20)

3.3 SQP Algorithm
The formulated NLP of Eqs. (17) ∼ (20) is solved

using SQP method. For the sake of computational ef-
ficiency, a Gauss-Newton Hessian approximate is used
instead of second derivatives of the cost function. Rather
than algorithms with line search loops, we adopt the state-
of-the-art real time iteration (RTI) scheme [13]. The RTI
scheme performs only one SQP iteration with a full New-
ton step, therefore dramatically reducing the computa-
tional time. The suboptimal solution of NLP found with
the RTI scheme is shown to be effective for MPC appli-
cations in [14, 15]. The QP problem is handled with an
external solver qpOASES [16] after being condensed.

4. NUMERICAL SIMULATION

The robust performance of the proposed trajectory
generation algorithm is validated through numerical sim-
ulations. In section 4.1, settings for the simulation are
introduced. The simulation results are presented in sec-
tion 4.2.

4.1 Simulation Settings
The trajectory generation algorithm is implemented

using MATMPC [17], a recently-developed MATLAB-
based toolbox for nonlinear MPC. Simulations are exe-
cuted on a laptop equipped with an Intel® CoreTM i7-
1165G7 and 16GB DDR4 RAM which runs the Windows
10 operating system. Parameters that were used in com-
mon for all simulations are listed at Table 2.

Table 2. Parameters used for simulations

mQ = 2kg mL = 0.1kg g = 9.81m/s2

IQ = diag ([0.01, 0.01, 0.02]) kg ·m2

Ip = 0.0003kg ·m2 ep = [1, 0, 0]
T

rp = 0.03m
α = 8 β = 1.6 γ = 50 L = 0 L = 1m

shooting interval time ∆tk = 0.04s
number of shooting points N = 60

total simulation time tf = 8s
xinit = [0, 0, 1, 0, 0,−1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]T

xdes = [6, 0, 1, 0, 0,−1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]T

uinit = udes = [20.601, 0, 0, 0,−0.02943]
T

Q1 = diag([8, 8, 8, 1, 1, 1, 20, 20, 20, 7, 7, 0,
20, 20, 20, 0, 0, 0, 0.8, 8, 0.6, 1, 1, 1, 100])

Q2 = diag([1.8, 1.8, 1.8, 1.8, 1.8,
1.8, 1.8, 1.8, 1.8, 1.8, 1.8])

L = diag([500, 500, 500, 1, 1, 1, 10, 10, 10,
10, 10, 10, 1, 1, 1, 10, 10, 10, 1, 1])
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4.2 Simulation Results
We present trajectories through tunnels of various

heights and lengths, in order to demonstrate the robust-
ness of our algorithm. The initial and desired load po-
sitions are fixed at [0, 0, 1] and [6, 0, 1], respectively.
Height of the tunnels are set to be shorter than the ini-
tial length of the cable. If the quadrotor wasn’t equipped
with the pulley mechanism, it would have had to make a
detour around the obstacle.

Collision-free trajectories of the quadrotor-pulley sys-
tem through tunnels of various heights and lengths are
depicted in Fig. 4 and Fig. 5, respectively. The pulley
mechanism is utilized to decrease the vertical distance be-
tween the quadrotor and the load before tunnel entrance.
Inside the tunnel, the length of the cable is maintained at
a certain value, which depends on the height of the pas-
sage. As the system exits the tunnel, pulley mechanism
unreels the cable to place the load at its desired position.

(a) trajectory when zo,1 = 1.1m, zo,2 = 1.9m.

(b) trajectory when zo,1 = 1.15m, zo,2 = 1.85m

(c) trajectory when zo,1 = 1.05m, zo,2 = 1.75m

(d) trajectory and inputs when zo,1 = 1.2m, zo,2 = 1.8m

Fig. 4. Trajectories through tunnels of various heights

Unlike the previous works on trajectory generation
through a narrow tunnel, the presented trajectories of the
quadrotor-pulley system do not require any aggressive or
unrealistic maneuvers. The magnitude of control inputs
remain sensible even when navigating through the most

(a) trajectory when xo,1 = 1m, xo,2 = 4m

(b) trajectory when xo,1 = 2m, xo,2 = 5m

(c) trajectory and inputs when xo,1 = 1m, xo,2 = 5m

Fig. 5. Trajectories through tunnels of various lengths

challenging obstacles, as shown in Fig. 4d and Fig. 5c.
The proposed trajectory generation method is well ap-

plicable for dynamic environments because weight ma-
trix adjustments or predefined waypoints are not required.
We also emphasize the ability of the presented method
to generate trajectories in real-time. Computational time
(CPT) of the NLP corresponding to the case illustrated in
Fig. 4a is shown in Table 3. As a comparison, CPT of
the problem using a SQP solver without the RTI scheme
is also listed.

Table 3. Computational time for solving NLP(ms)

avg. CPT max. CPT
with RTI 18.30 68.91

without RTI 177.1 3347

Every time a solution is obtained from Eqs. (17) ∼
(20), system trajectory for the next N∆tk = 2.4s is
generated. Therefore, the suggested method with the
RTI scheme is capable of real-time trajectory generation
in dynamic environments, with the average CPT of un-
der 20ms. The solution obtained from the NLP may be
suboptimal, but is enough to navigate the system safely
through narrow tunnels.

Regarding the application of the proposed trajectory
generation algorithm to actual experiments, a fast con-
troller such as the geometric controller presented in [11]
would be required to generate the control inputs. Also,
swing-angle p could be estimated with the method pre-
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sented in [18], and L and its derivative are obtainable
from the rotation angle of the actuator connected to the
pulley mechanism.

5. CONCLUSION

We present a real-time trajectory generation algorithm
for a quadrotor with its load suspended from a pulley.
MPC algorithm with SQP solver is used to solve the op-
timal control problem, which is formulated with the cost
function that can be generally applied for obstacle avoid-
ance tasks. The RTI scheme is adopted for the real-time
capability of the trajectory planning method. The per-
formance of the algorithm is demonstrated with simula-
tions, in which it was able to navigate the system through
tunnels of various heights and lengths without aggressive
maneuvers. The proposed algorithm is compatible with
dynamic environments, since predefined waypoints and
weight matrix adjustments are not required.
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