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Abstract

Recent advances in reinforcement learning (RL) enable its use on increasingly
complex tasks, but the lack of formal safety guarantees still limits its application in
safety-critical settings. A common practical approach is to augment the RL policy
with a safety filter that overrides unsafe actions to prevent failures during both
training and deployment. However, safety filtering is often perceived as sacrificing
performance and hindering the learning process. We show that this perceived
safety–performance tradeoff is not inherent and prove, for the first time, that enforc-
ing safety with a sufficiently permissive safety filter does not degrade asymptotic
performance. We formalize RL safety with a safety-critical Markov decision pro-
cess (SC-MDP), which requires categorical, rather than high-probability, avoidance
of catastrophic failure states. Additionally, we define an associated filtered MDP in
which all actions result in safe effects, thanks to a safety filter that is considered
to be a part of the environment. Our main theorem establishes that (i) learning in
the filtered MDP is safe categorically, (ii) standard RL convergence carries over to
the filtered MDP, and (iii) any policy that is optimal in the filtered MDP—when
executed through the same filter—achieves the same asymptotic return as the best
safe policy in the SC-MDP, yielding a complete separation between safety enforce-
ment and performance optimization. We validate the theory on Safety Gymnasium
with representative tasks and constraints, observing zero violations during training
and final performance matching or exceeding unfiltered baselines. Together, these
results shed light on a long-standing question in safety-filtered learning and provide
a simple, principled recipe for safe RL: train and deploy RL policies with the most
permissive safety filter that is available.

1 Introduction

Reinforcement learning (RL) has demonstrated outstanding performance in complex domains, yet
a fundamental limitation is the lack of strict safety guarantees, both during policy training and
at deployment. This poses a major barrier to deploying RL in safety-critical applications, from
autonomous driving to healthcare management, where even a single safety violation would be
catastrophic. One promising approach towards safety assurances in RL is to integrate a safety
filter [1] that monitors the system and overrides any unsafe candidate actions to preempt downstream
failures. In effect, the RL agent can explore and learn within a safe set, while the filter ensures that it
never enters unsafe regions.

However, enforcing hard safety constraints during training is commonly observed to negatively
interfere with the learning process and limit the asymptotic performance achievable by the learned
policy [2–5]. In addition, prior studies on safety filtering in control systems [6–8] have reported that
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Figure 1: Our proposed framework for training and deploying optimal RL policies under safety
filtering. First, we train a filter-agnostic task policy in a safety-enforcing environment where every
action is passed through a safety filter. Then, we deploy the learned task policy with the same filter at
runtime. The filtered RL policy provably achieves the same asymptotic performance as it had been
trained with the safety constraints in mind.

if the task policy is unaware of the presence of a safety filter, it may repeatedly attempt unsafe actions
that keep triggering filter overrides, resulting in suboptimal oscillations or “chattering” behaviors.
In such cases, the separation between safety and performance is incomplete: the task policy must
be made explicitly aware of the task-agnostic safety filter in order to avoid costly overrides. These
concerns raise a fundamental, unsettled question with safe RL: Does safety filtering inevitably hinder
the agent’s learning and ultimately limit the achievable performance? We provide, for the first time,
a theoretical answer to this question by proving that no such entanglement between safety filtering
and task policy training is necessary to obtain an optimal constrained policy. We view this as a
new foundational result in safe reinforcement learning, with significant practical implications as AI
technology advances towards increasingly complex autonomous systems.

Contributions. Our key insight is that safety and performance in reinforcement learning can be
learned separately and still converge towards provably safe and task-optimal agent behavior. We
prove that, under a safety filter that is least-restrictive yet capable of preventing all safety violations,
an RL agent trained in the filtered environment converges to the optimal safety-constrained policy; in
particular, the convergence guarantees enjoyed by RL algorithms on stationary, discounted Markov
decision process (MDP)s with bounded rewards carry over to this setting [9–12]. Remarkably,
we show—for the first time—that the safety–performance separation is complete in safe RL: the
task policy can be trained entirely agnostic to the safety filter and still attain the same asymptotic
performance as if it had been trained with the safety constraints in mind. The safety filter guarantees
that the agent never leaves the safe set, wherein the RL algorithm, free of the extra burden of handling
safety, optimizes the task performance. To complement our theoretical findings, we empirically
validate the safe RL principle using the Safety Gymnasium benchmark [13], a modern successor to
OpenAI’s Safety Gym [14], across different tasks, constraints, and environments.

2 Background and Related Work

Constrained reinforcement learning. Conventionally, RL methods model safety through a con-
strained Markov decision process (CMDP) [15], where the agent aims to maximize its return subject
to a budget on expected cumulative costs incurred in failure states. Prominent CMDP-based RL
approaches include trust-region methods such as Constrained Policy Optimization (CPO) [16],
Lagrangian/primal–dual methods (including PID–Lagrangian stabilizations) [17], reward–penalty
variants such as Reward Constrained Policy Optimization (RCPO) [18], and Lyapunov-based pro-
jected policy optimization [19]. Some methods depart from the standard CMDP formulation by
imposing a cap on expected cost at each individual time step [20] or considering risk measures like
conditional value-at-risk (CVaR) rather than expected costs [21]. While effective at enforcing some
statistical measure of safety, the above approaches generally permit failures along individual trajec-
tories. By contrast, our formulation considers truly safety-critical systems where catastrophic failures
are categorically unacceptable, and it consequently requires their probability to be exactly zero.1

1Our problem can be viewed as a non-generic limiting class of CMDPs where the allowable budget is exactly
zero, or costs are infinite. The opposite limiting class is MDPs, where the budget is infinite or costs are zero.
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Safety filters. A safety filter is an automatic process that continually monitors an agent’s proposed
actions and, when necessary, modifies them to avoid entering no-win scenarios from which future
failures may be inescapable. These techniques are popular in robotics and control, where safety
is more often formalized as all-time satisfaction of state constraints [1]. Representative classes
include (i) model predictive safety filters (MPSFs), which verify system safety at runtime by forward-
simulating a dynamics model or solving a trajectory optimization problem [22–24], (ii) control barrier
function (CBF)-based filters, which perform runtime optimization at each control cycle to smoothly
slow down any approach to the boundary of a known safe set [25–28], and (iii) reachability-based
filters, which first solve a Bellman/Hamilton–Jacobi (HJ) equation to compute the largest possible safe
set and then keep the agent from exiting it at runtime [29, 30]. Recently, neural approximations of the
safety value function [31–33] have enabled scalable synthesis and deployment of reachability-based
filters beyond the reach of numerical tools, from robotic walking and manipulation to air traffic
control and high-speed car racing [34–38].

Safety-filtered reinforcement learning. In safety-critical settings, safety filters can be used during
and after RL training to detect and modify unsafe candidate actions before the agent executes them
in the environment. Prior works have adopted CBF safety filters not only to guarantee safety but
also to guide learning by constraining the set of explorable policies [39]; this idea also extends to
robust CBFs that handle model uncertainty and disturbances [40]. MPSF enforces constraints via
short-horizon prediction during learning, enabling zero or minimal violations in data collection and
improved sample efficiency [8, 23, 24]. Reachability-based approaches include iteratively estimating
the safe set (and sometimes a fallback) to override unsafe proposed actions online [41], as well
as provably safe action projection using reachability analysis and polynomial zonotopes during
training [42]. Across these lines, empirical results report that RL under safety filtering improves
exploration efficiency by preventing safety violations and thus accelerates the convergence of task
policies [8]. However, these works ultimately fall short of providing formal optimality guarantees for
the executed (filtered) policy with respect to the safety-constrained MDP. We suspect it is this lack of
an optimality guarantee that contributes to the common misconception that safety filtering hinders
attainable task performance of RL policies [2–5]. Our result fills this gap by showing that, under a
sufficiently permissive safety filter, asymptotic task optimality is preserved.

Safe model-based learning. Orthogonal to safety-critical model-free RL, a rich line of literature
focuses on learning (or refining) system dynamics models and certifying safety during training model-
based RL policies. SafeOpt [43] ensures safety while optimizing an unknown function modeled as a
Gaussian process (GP), using confidence bounds to assess the safety of unexplored decisions. In a
complementary direction, Akametalu et al. [44] propose to reduce safety filter conservativeness by
learning the system’s unknown dynamics, treated as a disturbance input, with a GP, and integrating
the relaxed safety constraints into RL. Similarly, Berkenkamp et al. [45] and Richards et al. [46] learn
Lyapunov certificates (and associated regions of attraction) from data and leverage them to enforce
safe exploration. Another line of work uses model predictive control (MPC) as the safety mechanism
around learned dynamics—typically via (i) uncertainty-aware prediction for tightened or chance
constraints, (ii) terminal conditions (invariant/robust sets and backups) for recursive feasibility, and
(iii) safety certificates (Lyapunov/barrier) to justify constraint satisfaction; see Hewing et al. [47]
for a comprehensive review. Koller et al. [5] couple a GP dynamics model with chance-constrained
MPC to enable high-probability safe exploration while improving the policy. In summary, these safe
model-based learning methods generally require a coarse dynamic model and an initial safe set with a
backup controller, rely on high-probability (not categorical) guarantees, face scalability limits due to
GP regressors, and the learned dynamics are often residual on top of a known structure. By contrast,
we focus on safe model-free reinforcement learning, which bypasses these modeling requirements
and directly learns task policies under safety filtering without relying on explicit dynamics models.

3 Problem Formulation

We study an RL agent operating in a stochastic environment subject to failure conditions that must
never occur. We formalize this setting in two complementary ways: (i) as a safety-critical Markov
decision process (SC-MDP), where only actions that keep the agent safe are allowed, and (ii) as
a filtered MDP, where a safety filter minimally intervenes to correct unsafe actions. These two
perspectives lay the groundwork for the theoretical result in the next section: an optimal policy
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learned in the filtered MDP, and subsequently deployed with the same filter, achieves the same
asymptotic performance as the best policy in the SC-MDP. The assumptions we adopt in this
section to formulate the safety-critical decision-making problem and prove our theoretical results are
introduced in Assumption 1.

3.1 Safety-Critical Markov Decision Process

We consider an MDP defined by tuple M = (S,A,P, r, γ), where S is the state space, A is the
action space, P : S ×A → P(S) is the transition probability, r : S ×A → R is the reward function,
and γ ∈ (0, 1) is the discount factor. We denote F ⊂ S as the failure set encoding conditions deemed
unacceptable and must be strictly avoided at all times, formally defined as:

F :=
{
s ∈ S : g(s) < 0

}
, (1)

where g is a safety margin function representing F as its zero sublevel set.
Definition 1 (Safety-Critical MDP (SC-MDP)). An SC-MDP is a tuple MSC = (S,A,P, r, γ,F).
For each s ∈ S, MSC defines an infinite-horizon constrained optimal control problem:

max
π

E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s, at ∼ π(· | st), st+1 ∼ P(· | st, at)

]
(2a)

s.t. Pr[st /∈ F , ∀t | s0 = s] = 1, (2b)

where the task policy π is a stochastic kernel on A given S.

We now characterize what constitutes an admissible policy, i.e., one that satisfies the all-time safety
constraint (2b), by adopting the notion of set invariance [48]. Specifically, a controlled-invariant set
Ω ⊂ S guarantees the existence of a policy π that recursively keeps the state s within Ω for all time,
i.e., ∀s ∈ Ω and ∀a ∈ suppπ(· | s), suppP(· | s, a) ⊆ Ω. Denoting Ω∗ ⊆ S \ F as the maximal
controlled-invariant safe set, for each s ∈ Ω∗, we define the safe action set as

Asafe(s) := { a ∈ A : suppP(· | s, a) ⊆ Ω∗ }. (3)

Now, we define the admissible policy set as

Πsafe :=
{
π : suppπ(· | s) ⊆ Asafe(s), ∀s ∈ Ω∗

}
. (4)

The admissible policy set Πsafe is the largest set of policies that ensure all-time safety (2b) provided
that the system is initialized within Ω∗ (see Proposition 1 for the proof). For an admissible policy
π ∈ Πsafe, we define its value on MSC as

V π
MSC

(s) := E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s, at ∼ π(· | st), st+1 ∼ P(· | st, at)

]
, (5)

and the optimal value as V ∗
MSC

(s) := supπ∈Πsafe
V π
MSC

(s).
Remark 1 (Probabilistic and worst-case uncertainty). The SC-MDP unifies performance-centric
probabilistic uncertainty and safety-centric deterministic uncertainty within a single framework. In
contrast to conventional viewpoints that treat probabilistic and deterministic uncertainty as mutually
exclusive, we show that combining them is not only theoretically sound but also advantageous: it
achieves the best of both worlds—optimal expected task performance under strict safety guarantees.

Real systems are often designed around unknown-but-bounded uncertainty (e.g., external disturbances
and modeling errors), while facing hazards captured here by the failure set F . Many “safe RL”
benchmarks and baselines adopt the CMDP formalism [13, 14], in which the agent maximizes
expected return subject to an expected cumulative constraint budget. In that view, transient violations
are permitted as long as their expected cumulative constraint cost remains below the threshold. As a
result, CMDP formulations can still permit rare but catastrophic failures on individual trajectories,
which are unacceptable in safety-critical decision-making. This also conflicts with the spirit of
the operational design domain (ODD), which specifies conditions under which a system should
never experience a specified class of failures [1]; CMDP formulations generally do not provide
per-trajectory, failure-free guarantees under such conditions.
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By contrast, the SC-MDP requires categorical avoidance of failure, yielding a zero-violation specifi-
cation by construction. It is robust to tail events while still leaving task performance optimized in
expectation. This allows engineers to delineate a clear operating envelope within which the system is
guaranteed to operate safely—supporting deployment, auditability, and public trust in automated
decision-making.

3.2 Filtered Markov Decision Process

To ensure that SC-MDP satisfies all-time safety constraint (2b), we leverage a safety filter—an
automatic process that monitors the agent’s decision-making and, when necessary, modifies the
nominal action in order to prevent safety violations. However, constraining the agent to an overly
restrictive invariant set may hinder the agent from achieving satisfactory task performance, i.e., to
accumulate high discounted rewards. Given the MDP M together with the maximal controlled-
invariant safe set Ω∗, we formalize a perfect (least-restrictive) safety filter [1] that enforces safety by
intervening if and only if the nominal action causes state s to immediately exit Ω∗.
Definition 2 (Perfect safety filter). A perfect (least-restrictive) safety filter is a map ϕ : S ×A → A
such that, ∀s ∈ Ω∗,

1. ϕ(s, a) ∈ Asafe(s), ∀a ∈ A,

2. ϕ(s, a) = a, ∀a ∈ Asafe(s).

For safe RL, we now define the filtered MDP, where every action is passed through a perfect safety
filter before execution. This can be interpreted as a “bubble-wrapped” environment, where the agent
remains agnostic to the safety filter.
Definition 3 (Filtered MDP). The filtered MDP is a tuple Mϕ := (Ω∗,A,Pϕ, rϕ, γ), where ϕ
is a perfect safety filter, Pϕ(· | s, a) := P

(
· | s, ϕ(s, a)

)
is the filtered transition probability, and

rϕ(s, a) := r
(
s, ϕ(s, a)

)
is the filtered reward. For a measurable and stationary policy π, we define

its value on Mϕ as

V π
Mϕ

(s) := E

[ ∞∑
t=0

γt rϕ(st, at)

∣∣∣∣∣ s0 = s, at ∼ π(· | st), st+1 ∼ Pϕ(· | st, at)

]
, (6)

and the optimal filtered value as V ∗
Mϕ

(s) := supπ V
π
Mϕ

(s).

4 Safe Reinforcement Learning Theory

In this section, we present our core theoretical results. First, we show that learning in the filtered
MDP Mϕ is provably safe, and that the standard RL convergence guarantees remain intact. Second,
we prove that any policy that is optimal in Mϕ, when executed under the same filter at deployment,
is also optimal in the SC-MDP MSC. To establish these results rigorously, we begin by stating the
technical assumptions required for our analysis.
Assumption 1 (Standing assumptions). We assume the following throughout this section:

1. (Spaces and measurability) S and A are Borel spaces. Ω∗ is nonempty and closed. P(· | s, a)
and r(s, a) are Borel-measurable in their arguments.

2. (Safe initialization) All training episodes start in Ω∗.

3. (Stationarity and boundedness) P(· | s, a) and r(s, a) are time-invariant. Rewards are
bounded, i.e., sups,a |r(s, a)| < ∞.

4. (Safety filter existence) A perfect safety filter ϕ (Definition 2) exists; ϕ is measurable and
time-invariant.

We are now ready to state our main theoretical result that formalizes the safety–performance separation
principle in safe reinforcement learning.
Theorem 1 (Safe and optimal RL under a perfect safety filter). If Assumption 1 holds, then the
following claims on the safety, convergence, and optimality of RL under safety filtering are true:
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1. Safe learning. For any sequence of task policies produced by any RL algorithm during
training, the filtered trajectories remain in Ω∗ for all time.

2. Convergence. Let ALG be an RL algorithm that converges on a stationary discounted
MDPs with bounded rewards. Then, for any such MDP M, ALG also converges on the
corresponding filtered MDP Mϕ.

3. Optimality under safety filtering. Let πε
ϕ denote a measurable and stationary ε-optimal

policy on Mϕ, possibly returned by ALG, for some ε > 0:

V
πε
ϕ

Mϕ
(s) ≥ V ∗

Mϕ
(s)− ε, ∀s ∈ Ω∗. (7)

We define the executed policy πexec as the pushforward of πε
ϕ by the map a 7→ ϕ(s, a); i.e.,

for all Borel measurable sets B ⊆ A,

πexec(B | s) := πε
ϕ

(
{a ∈ A : ϕ(s, a) ∈ B} | s

)
, ∀s ∈ Ω∗. (8)

Then, πexec is a safe ε-optimal policy on MSC:

V πexec

MSC
(s) ≥ V ∗

MSC
(s)− ε, ∀s ∈ Ω∗. (9)

Proof. The proof is deferred to Appendix A.

Remark 2 (Safety with optimal performance). What Theorem 1 establishes. For any ε > 0, any
ε-optimal policy on the filtered MDP Mϕ induces, when executed through a perfect safety filter, a safe
ε-optimal policy on the SC-MDP MSC. Consequently, as an RL algorithm drives suboptimality on
Mϕ to zero (e.g., by sufficient exploration of state–action pairs and appropriate stepsize conditions),
the executed policy becomes asymptotically optimal on MSC:

lim
ε→0+

(
V ∗
MSC

(s)− V πexec

MSC
(s)

)
= 0, ∀s ∈ Ω∗.

Therefore, the safety–performance separation in RL is complete: enforcing safety with a sufficiently
permissive safety filter during task policy training does not degrade asymptotic performance.
Remark 3 (Practical recipe for Safe RL). Equivalence. Consider two ways to obtain a safe policy:

• Oracle safe RL benchmark: In the SC-MDP (MSC), choose any policy that is optimal
among those that never violate safety (i.e., those in Πsafe).

• Filter-based safe RL: Learn in a world where every proposed action is passed through the
safety filter (Mϕ), and pick any policy that is optimal there. At deployment in the SC-MDP,
run the learned policy through the same filter.

The two routines achieve the same long-run return on safe trajectories in the limit as the training
suboptimality on Mϕ vanishes (Remark 2).

Practical Recipe. Unlike the oracle safe RL, which cannot be realized by any practical algorithm,
filter-based safe RL offers an actionable framework as depicted in Figure 1: train your task policy
with any standard RL algorithm while keeping the safety filter in the loop, and deploy the same
policy–filter pair at runtime. The safety filter needs to be computed only once, provided that the
transition probability P and the failure set F stay the same. Crucially, this approach enables formal
safety guarantees with asymptotic performance identical to that obtained by training directly under
hard safety constraints.

5 Experiments

To empirically validate our theoretical results, we build on the Safety Gymnasium benchmark [13], a
modern successor to OpenAI’s Safety Gym [14]. Safety Gymnasium provides a unified reinforcement
learning environment for evaluating different training algorithms, emphasizing safety-critical tasks
with standardized metrics. Importantly, it retains the original design philosophy of Safety Gym:
testing whether agents can train an optimal task policy without sacrificing safety during training,
with enhanced environment and task diversity, simulation fidelity, and compatibility with modern RL
training pipelines such as Stable-Baselines3 [49]. By situating our experiments in this benchmark,
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Figure 2: Top: environment components (Agent, Circle, Pillars, Goal, Walls). Bottom: example
scenes for the two tasks from Safety Gymnasium [13]. We use the Car agent across all experiments.
Circle task: the agent aims to track the green circle’s boundary as fast as possible while remaining
inside the square wall; safety is violated by crossing the wall. Goal task: the agent navigates to a
fixed green goal while avoiding the pillars and staying inside the wall; safety is violated by crossing
the wall or colliding with a pillar. In both tasks, the agent is randomly initialized inside the wall and
away from the pillars and the goal.

we ensure that our evaluation (i) directly validates the safety–performance separation as stated in
Theorem 1, (ii) is grounded in a standardized and widely used testbed for constrained RL, and
(iii) provides consistent results across diverse tasks and environments. We expect that our safe RL
framework will serve as a state-of-the-art baseline for future work on safe reinforcement learning;
because it is directly deployable within the Safety Gymnasium benchmark, it can be used out of the
box to conveniently evaluate and compare new methods.

5.1 Experiment Setup

In this section, we introduce the setup of our experiments, including the agent, environment, safety
filters used for training and deployment, and baseline comparisons. Full details of the experimental
setup, including model architecture, safety specifications, and filter implementation, can be found in
Appendix B.

Agent. We use the Car agent from Safety Gymnasium. It has continuous control inputs and is
implemented as a differential-drive platform with two independently driven parallel wheels and a
free-rolling rear wheel, exactly as provided in the benchmark suite [13, 14].

Tasks, rewards, and safety constraints. We evaluate safe RL with the following representative tasks
from Safety Gymnasium [13], each with distinct reward functions and safety constraints.

• Goal: The robot navigates to a fixed goal position while avoiding contact with cylindrical
obstacles and remaining inside a square wall (see Figure 2). Specifically, the reward is
proportional to the decrement of the distance between the robot and the goal over a single
timestep, and an additional reward is provided when the robot reaches the goal. The robot is
constrained within a square wall that contains four cylindrical obstacles (i.e., pillars); the
position of the square wall and the pillars remain fixed. Crossing the square wall or colliding
with a pillar is considered a safety violation. The robot is randomly initialized inside the
square wall, sufficiently far from the pillars and the goal.

• Circle: The robot aims to track the boundary of the green circle as fast as possible while
remaining inside a square wall (see Figure 2). Specifically, the reward function consists
of two factors: (i) a tracking reward that increases as the robot stays closer to the circle
boundary, and (ii) a velocity factor that rewards larger tangential velocity along the circle.
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The robot is constrained within a square wall with a fixed position; crossing the wall is
considered a safety violation. The robot is randomly initialized inside the square wall.

Safety filters. We use two types of safety filters in our experiments: one with value-based monitor-
ing [1, Section 3.1] and the other with rollout-based monitoring [1, Section 3.3]. For both filters, we
learn a best-effort fallback policy and the associated safety value function with model–free–RL–based
HJ reachability analysis [31, 38]. Specifically:

• Value-based filter queries, at each timestep, the learned value function to determine whether
the current state is safe. If the proposed action sampled from the task policy is deemed safe,
we execute it; otherwise, we override it with the best-effort safety fallback.

• Rollout-based filter simulates, at each timestep, a state trajectory based on a proposed
action sampled from the task policy, followed by a series of actions from the best-effort
fallback policy for a fixed horizon. If the state reaches a known terminal safe state (or
controlled-invariant safe set) within that horizon, we may execute an action sampled from
the task policy; otherwise, we apply the safety fallback action.

We note that both safety filters are constructed based on a neural approximation to the perfect
safety filter (Definition 2). Although a valid (resolution-complete) safety filter with value-based
monitoring can be obtained by solving the safety Bellman equation with dynamic programming
(DP) [30], it does not scale to Safety Gymnasium benchmarks, which involve more than six continuous
observation dimensions. Nonetheless, in Section 5.2, we show empirically that despite the lack of
formal guarantees, a value-based neural safety filter can significantly reduce the frequency of safety
violations during training. Notably, the rollout-based monitoring, unlike the value-based counterpart,
leads to a provably valid safety filter for the benchmarking tasks in Safety Gymnasium, since coming
to a stop is a known terminal safe state for the Car agent. Indeed, as shown in Section 5.2, this
approach achieves zero safety violations. Moreover, the task policies trained under both filters
converge to the same—and, in some cases, higher—episodic return as the baselines.

Baselines. We compare against two baselines for constrained RL:

• CPO [16]: The agent optimizes its return subject to a budget on the environment’s constraint
costs. We use the same implementation provided by Safety Gymnasium exactly as released.

• Standard soft actor–critic (SAC): The agent optimizes its return with no explicit constraints
or costs other than episode termination, which occurs immediately after a safety violation.
Because episode termination prevents the agent from accruing positive rewards in the future,
this setup implicitly encourages the agent to learn policies that satisfy the safety constraints.
This is a commonly used heuristic for RL under soft safety constraints [38, 50].

RL algorithms. All task policies are trained with SAC [12] (except the CPO baseline) using the
Stable-Baselines3 [49] implementation. Training budgets (environment steps per run), model capacity,
and evaluation protocols are kept identical across all methods to ensure a fair comparison.

Reproducibility. Each method is run with five independent random seeds. We report the mean
and standard error across seeds under a fixed training step budget and a shared evaluation protocol
(periodic evaluation episodes with safety violations and episodic returns logged). All code and
experimental scripts necessary to reproduce our results will be publicly released upon publication.

5.2 Results

In this section, we report results in training task policies under a value-based filter and a rollout-based
filter, and compare them to the baselines. Specifically, we focus on (i) safety violations during task
policy training, (ii) convergence of the RL algorithm, and (iii) optimality of the trained task policy.

Safety during RL training. The number of safety violations accumulated up to a given environment
step during task policy training is shown in the last row of Figure 3. Remarkably, our rollout-based
filter recorded zero safety violations in both tasks across five random seeds. This is expected since
the rollout-based filter is a valid safety filter with strict guarantees, and it directly supports our
theoretical claim of safe learning in Theorem 1: given a valid safety filter, system trajectories
remain safe throughout task policy training. Although our value-based filter produced a non-zero
violation count due to neural approximation error, it nevertheless resulted in fewer violations on
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Figure 3: Experimental results on the Goal (left) and Circle (right) tasks in Safety Gymnasium. We
compare our safe RL framework, implemented with an SAC-based task policy and a neural safety
filter with rollout- and value-based monitoring, against CPO and standard SAC baselines. Top: mean
episodic training return versus the number of environment steps. Middle: mean episodic evaluation
return versus the number of environment steps. Bottom: cumulative safety violations versus the
number of environment steps. Our method achieves zero safety violations when using a valid
(rollout-based) safety filter while converging to the same or higher return than the baselines. Even
with an error-prone approximate (value-based) filter, the number of safety violations is significantly
reduced compared to the baselines.

both tasks compared to the two baselines. Standard SAC incurred the second-most violations on
the Goal task and the most on the Circle task. We also observe that the cumulative violation curves
plateau with training, indicating that although standard SAC cannot enforce safety during training,
the learned task policy increasingly avoids violations as the algorithm converges. CPO recorded the
most total violations on Goal and the second-most on Circle. For completeness, we additionally mark
CPO’s post-convergence metric (symbol “×” in Figure 3), since CPO converges much later than the
other methods. Our primary comparisons, however, use counts at a common training budget—100k
environment steps for Goal and 150k for Circle—for all methods.

Convergence of RL training under safety filtering. From Figure 3, we conclude that SAC under
both rollout- and value-based filtering, as well as standard SAC, converged well within our training
budget. For these three methods, the episodic training return and the evaluation return plateau within
the budget on both tasks, and the variance of these metrics remains very small across seeds, indicating
convergence over repeated runs. This supports our theoretical claim of convergence in Theorem 1: if
an RL algorithm converges on an (unconstrained) MDP, then the same algorithm converges on its
filtered counterpart. By contrast, CPO takes significantly more environment steps to converge, and its
episodic returns exhibit substantially larger variance than the other filtered RL methods.

In the Circle task, we observe that training under the rollout-based filter converges substantially
faster (in environment steps) than the other methods. This acceleration is consistent with prior
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reports that safety filtering improves sample efficiency by pruning unsafe exploration [8, 23, 24]. A
plausible explanation is task geometry and reward shaping: Circle rewards encourage high tangential
speed while staying close to the circle boundary, which lies inside the square wall. Pushing for
higher reward inevitably increases the chance of wall contact under unconstrained exploration; the
rollout-based filter preemptively removes those unsafe proposals, concentrating data on productive
(safe) trajectories and speeding convergence. By contrast, the effect is less pronounced in the Goal
task. Depending on the random initialization, a shortest path to the goal can often avoid obstacles and
the wall even without interventions, so there is less unsafe exploration to prune. Consequently, while
the safety filter still prevents violations, the gain in exploration efficiency—and thus in convergence
rate—is smaller on Goal than on Circle. Characterizing and optimizing the convergence rate for
reinforcement learning under safety filtering is beyond the scope of this paper and remains an
important direction for future work.

Performance of the task policy. As shown in Figure 3, on both tasks the policies trained under
rollout- and value-based filtering attain final performance that matches—or exceeds—standard SAC
and CPO. This empirically supports our most significant claim of optimality under safety filtering
(Theorem 1, Remark 2): enforcing safety with a sufficiently permissive safety filter during training
does not degrade the asymptotic performance. In the Goal task, training under rollout- and value-
based filtering yields nearly identical episodic training and evaluation returns, while CPO achieves
a substantially lower return under the same training budget. As a sanity check, we run CPO until
convergence and observe that its return eventually matches that of the other methods. In the Circle task,
training with the rollout-based filter achieves significantly higher return than both the value-based filter
and standard SAC; CPO records little meaningful return within budget and, even post-convergence,
reaches a level comparable to value-based filtering and standard SAC, yet still below the policy
trained with the rollout-based filter. Taken together, these results demonstrate that task policy training
under safety filtering attains the same (and, in some cases, higher) task performance as unconstrained
baselines, providing concrete empirical evidence for the safety–performance separation in safe RL.

6 Conclusion

In this paper, we have established formal convergence and optimality results for reinforcement learn-
ing under safety filtering (safe RL). Our theoretical analysis proves that, under an idealized safety
filter that is minimally restrictive yet capable of preventing all unsafe actions, reinforcement learning
achieves complete safety–performance separation, yielding the same asymptotic performance as
direct optimization under hard safety constraints. This result resolves a longstanding misconception
in reinforcement learning that enforcing safety inevitably limits the agent’s attainable performance.
It shows that safety filtering provides a principled mechanism for maintaining both formal safety
guarantees and optimal long-term behavior in RL, independent of the specific RL algorithm used
for optimizing task performance. Empirical validation on Safety Gymnasium benchmarks further
supports our theory, demonstrating that, in practice, the proposed safe RL framework achieves zero
safety violations with a valid safety filter, while converging to a policy that matches or surpasses base-
line performance. Taken together, these findings provide a rigorous paradigm for safe reinforcement
learning: learn your safety filter once, train any RL algorithm with the filter in the loop, and deploy
the same filter–policy pair to achieve strict safety and optimal performance in tandem.
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A Theoretical Results and Proofs

Lemma 1 (No all-time safety outside the maximal invariant set). Let Ω∗ ⊆ S \ F be the maximal
controlled-invariant safe set. Then, for any stationary policy π and any s ∈ Ω∗c ∩ (S \ F),

Pr
π,P

[
st /∈ F , ∀t

∣∣ s0 = s
]
< 1.

In words, starting outside Ω∗, no stationary policy can satisfy the all-time safety constraint with
probability 1.

Proof. We prove by contradiction. Assume there exists s ∈ Ω∗c ∩ (S \ F) and a stationary policy π
such that Prπ,P[st /∈ F , ∀t | s0 = s] = 1. Define

Rπ :=
{
x ∈ S \ F : Pr

π,P

[
st /∈ F , ∀t

∣∣ s0 = x
]
= 1

}
.

By the Markov property, if x ∈ Rπ, then the set of next possible states rendered by π and P should
be a subset of Rπ. More formally, for all a ∈ suppπ(· | x), suppP(· | x, a) ⊆ Rπ. Thus, Rπ is a
controlled-invariant subset of S \F under π, and since there exists s ∈ Rπ \Ω∗, the set Ω∗ ∪Rπ is a
strictly larger controlled-invariant safe set than Ω∗. This contradicts the maximality of Ω∗. Therefore,
no such s exists.

Proposition 1 (Maximality of the admissible policy set). Let Ω∗ ⊆ S \ F be the maximal controlled-
invariant safe set, and define Asafe(s) := {a ∈ A : suppP(· | s, a) ⊆ Ω∗} for all s ∈ Ω∗. Consider
the set of measurable, stationary policies

Πsafe :=
{
π : suppπ(· | s) ⊆ Asafe(s), ∀s ∈ Ω∗

}
.

Then Πsafe is the largest collection of policies that satisfy the all-time safety constraint from every
initial state in Ω∗.

Proof. (Πsafe policies are admissible.) Let π ∈ Πsafe. For any s ∈ Ω∗ and any a ∈ suppπ(· | s), we
have suppP(· | s, a) ⊆ Ω∗. By induction, we get Prπ,P

[
st /∈ F , ∀t

∣∣ s0 = s
]
= 1.

(Policies not in Πsafe are not admissible.) Let π /∈ Πsafe. Then there exist s ∈ Ω∗ and a ∈ suppπ(· |
s) such that a /∈ Asafe(s), so suppP(· | s, a) ⊈ Ω∗. Hence, with positive probability, the next state
rendered by π and P lies in Ω∗c. By Lemma 1, the overall probability of ever entering F starting
from s under π is positive. Thus π violates the all-time safety constraint from s.

Maximality of Πsafe follows immediately: any stationary policy assigning positive mass to an action
outside Asafe(s) at some s ∈ Ω∗ cannot satisfy the all-time safety constraint from that state.

Theorem (Restatement of Theorem 1). If Assumption 1 holds, then the following claims on the safety,
convergence, and optimality of RL under safety filtering are true:

1. Safe learning. For any sequence of task policies produced by any RL algorithm during
training, the filtered trajectories remain in Ω∗ for all time.

2. Convergence. Let ALG be an RL algorithm that converges on a stationary discounted
MDPs with bounded rewards. Then, for any such MDP M, ALG also converges on the
corresponding filtered MDP Mϕ.

3. Optimality under safety filtering. Let πε
ϕ denote a measurable and stationary ε-optimal

policy on Mϕ, possibly returned by ALG, for some ε > 0:

V
πε
ϕ

Mϕ
(s) ≥ V ∗

Mϕ
(s)− ε, ∀s ∈ Ω∗.

We define the executed policy πexec as the pushforward of πε
ϕ by the map a 7→ ϕ(s, a); i.e.,

for all Borel measurable sets B ⊆ A,

πexec(B | s) := πε
ϕ

(
{a ∈ A : ϕ(s, a) ∈ B} | s

)
, ∀s ∈ Ω∗.

Then, πexec is a safe ε-optimal policy on MSC:

V πexec

MSC
(s) ≥ V ∗

MSC
(s)− ε, ∀s ∈ Ω∗.
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Proof. (Safe learning) Since all training episodes begin in Ω∗ (Assumption 1) and ϕ(s, a) renders
Ω∗ invariant for all a ∈ A produced by any task policy (Definition 2, Assumption 1), all filtered
trajectories remain in Ω∗ for all time.

(Convergence) From Assumption 1 and Definition 3, both Pϕ and rϕ are time-invariant and rϕ is
bounded. Thus, the filtered MDP Mϕ is a stationary discounted MDP with bounded rewards. The
iterates of ALG depend only on the executed tuples

(st, at, rt, st+1) with rt = rϕ(st, at), st+1 ∼ Pϕ(· | st, at),
and on the stepsize/exploration schedule of ALG. Every step in the convergence proof of ALG on M
applies to Mϕ with the substitution (P, r) 7→ (Pϕ, rϕ). Therefore ALG converges on Mϕ. This carry-
over presumes the same algorithmic side conditions—e.g., stepsize conditions and ergodicity/coverage
under the executed policy—also hold in Mϕ. It covers, for example, almost-sure convergence of
tabular Q-learning [9, 10], two-timescale actor–critic [11], and soft policy-iteration convergence for
SAC [12].

(Optimality under safety filtering) We begin with showing the equivalence between V ∗
Mϕ

and V ∗
MSC

.
We define the optimal Bellman operators for the filtered MDP Mϕ and the SC-MDP MSC, respec-
tively:

(T ∗
Mϕ

V )(s) = sup
a∈A

{
rϕ
(
s, a

)
+ γ Es′∼Pϕ(·|s,a)[V (s′)]

}
= sup

a∈A

{
r
(
s, ϕ(s, a)

)
+ γ Es′∼P(·|s,ϕ(s,a))[V (s′)]

}
,

(T ∗
MSC

V )(s) = sup
a∈Asafe(s)

{
r(s, a) + γ Es′∼P(·|s,a)[V (s′)]

}
.

From Definition 2, the image of the map a 7→ ϕ(s, a) is exactly Asafe(s) and ϕ is the identity on
that image. Taking the supremum over a ∈ A post-composition by ϕ equals the supremum over
a ∈ Asafe(s). Therefore, we have

T ∗
Mϕ

= T ∗
MSC

, pointwise on Ω∗.

Since both operators are γ-contractions on (Bb(Ω
∗), ∥ · ∥∞)—the Banach space of bounded Borel-

measurable value functions V : Ω∗ → R endowed with the sup norm—they have the same unique
fixed point:

V ∗
Mϕ

(s) = V ∗
MSC

(s), ∀s ∈ Ω∗.

We now show the equivalence between V
πε
ϕ

Mϕ
and V πexec

MSC
. We unroll the expectation and apply the

definition of the filtered MDP Mϕ (Definition 3):

V
πε
ϕ

Mϕ
(s) = E

[ ∞∑
t=0

γt rϕ(st, at)

∣∣∣∣∣ s0 = s, at ∼ πε
ϕ(· | st), st+1 ∼ Pϕ(· | st, at)

]

= E

[ ∞∑
t=0

γt r
(
st, ϕ(st, at)

) ∣∣∣∣∣ s0 = s, at ∼ πε
ϕ(· | st), st+1 ∼ P

(
· | st, ϕ(st, at)

)]
.

Let ãt := ϕ(st, at), where at ∼ πε
ϕ(· | st). The executed policy πexec is defined as the pushforward

of the ε-optimal policy πε
ϕ by the map a 7→ ϕ(s, a). Therefore, ãt ∼ πexec(· | st), and we have

V
πε
ϕ

Mϕ
(s) = E

[ ∞∑
t=0

γt r(st, ãt)

∣∣∣∣∣ s0 = s, ãt ∼ πexec(· | st), st+1 ∼ P(· | st, ãt)

]
= V πexec

M (s), ∀s ∈ Ω∗.

By the perfect safety filter property (Definition 2) and the pushforward definition of πexec, we have
suppπexec(· | s) ⊆ Asafe(s) for all s ∈ Ω∗. Therefore, πexec ∈ Πsafe, and this gives

V πexec

M (s) = V πexec

MSC
(s), ∀s ∈ Ω∗.

Finally, combining the equalities yields

V πexec

MSC
(s) = V

πε
ϕ

Mϕ
(s) ≥ V ∗

Mϕ
(s)− ε = V ∗

MSC
(s)− ε, ∀s ∈ Ω∗.

This proves the ε-optimality and the safety of πexec on MSC.
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B Implementation Details

Model architecture. The SAC task policy and safety policy have the same architecture, with the
actor and critic policies implemented by a fully connected feedforward neural network with 2 hidden
layers of 256 neurons. The CPO task policy has 2 hidden layers of 64 neurons. All policies use ReLU
activations for SAC-based architectures and Tanh activations for CPO.

The safety policy is trained with a learning rate 1× 10−5, replay buffer size of 2× 105, batch size of
256, discount factor γ = 0.995, and soft update coefficient τ = 0.01, for a total of 2× 106 steps.

The task policy SAC is trained with a learning rate 3 × 10−4, replay buffer size of 1 × 105, batch
size of 256, γ = 0.99, and τ = 0.01.

The CPO policy is trained with a learning rate of 3× 10−4, γ = 0.99, and KL-divergence step size
of δKL = 0.01.

Safety filter implementation. For rollout filtering, we adopt the rollout evaluation procedure
described in Nguyen et al. [34]. We use a finite rollout horizon of H = 100 and define the target
margin function l(s) and stop policy πstop as

l(s) = η −
√
v2x + v2y, πstop(a | s) = 0

where η denotes the target safety velocity threshold. Although the safety policy was not explicitly
trained to bring the robot to a complete stop, it implicitly learned to reduce the robot’s velocity near
obstacles, either by slowing down to a complete stop or rotating in place until the obstacles are out
of sight. This emergent behavior motivates the design of the above target margin function and stop
policy as the fallback policy when l(s) > 0. We choose η = 0.01 in our experiments.

For value-based filtering, we run the experiment across a sweep of ϵ values, and choose the ϵ with the
highest return and lowest total violations. Specifically, we choose ϵgoal = 0.4, and ϵcircle = 0.1.

State and action spaces. The Circle task and the Goal tasks each employ ego-centric proprioceptive
observations, consisting of accelerometer, velocity, angular rate, magnetic field, rear ball rotation,
and local LiDAR readings. The observation space has 40 and 72 dimensions, respectively, while the
continuous action space is similar across both tasks:

sGoal :=
[
ax,y,z, vx,y,zs, ωx,y,z,mx,y,z ḃx,r, ḃy,r, ḃz,r, q

(3×3)
b,r , ℓgoal

1:16, ℓ
pillar
1:16 , ℓ

wall
1:16

]
,

sCircle :=
[
ax,y,z, vx,y,zs, ωx,y,z,mx,y,z ḃx,r, ḃy,r, ḃz,r, q

(3×3)
b,r , ℓsigwall

1:16

]
,

a :=
[
τL, τR

]
,

where (ax,y,z), (vx,y,z), and (ωx,y,z) denote accelerometer, velocimeter, and gyroscope readings;
(mx,y,z) the magnetometer readings; ḃ(·),r the rear ball angular velocity; q(3×3)

b,r the rear ball orien-

tation matrix; and ℓ
(·)
1:16 the 16-beam LiDAR signals for different object classes (goal, wall, pillar).

The action vector a = [τL, τR] applies continuous torques to the left and right wheels, each bounded
within [−1, 1].

Goal task margin function. Let zpillar
i , zwall

i ∈ [0, 1] denote 16-beam LiDAR proximities (1 = very
close, 0 = far) for pillars and walls, respectively. With LiDAR max range R > 0 and safety clearance
δ > 0, convert to distances

dpillar
i = (1− zpillar

i )R, dwall
i = (1− zwall

i )R,

and define the minimum distance to safety-critical objects

dmin(s) = min
i

{
dpillar
i , dwall

i

}
.
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The margin is
ggoal(s) = dmin(s) − δ.

In our experiments we use R = 3.0m and δ = 0.02m. The episode terminates if ggoal(s) < 0 or
upon explicit collision.

Circle task margin function. Let x(s) ∈ R2 be the robot planar position and W = {Wk} the set of
signal-wall line segments (axis-aligned). Define the point–segment distance

d(x,Wk) = min
p∈Wk

∥x− p∥2, dmin(s) = min
k

d
(
x(s),Wk

)
.

The margin is
gcircle(s) = dmin(s) − δ.

We use R = 6.0m and δ = 0.02m. The episode terminates if gcircle(s) < 0 or upon explicit collision.
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