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Abstract

Recent advances in reinforcement learning (RL) enable its use on increasingly
complex tasks, but the lack of formal safety guarantees still limits its application in
safety-critical settings. A common practical approach is to augment the RL policy
with a safety filter that overrides unsafe actions to prevent failures during both
training and deployment. However, safety filtering is often perceived as sacrificing
performance and hindering the learning process. We show that this perceived
safety—performance tradeoff is not inherent and prove, for the first time, that enforc-
ing safety with a sufficiently permissive safety filter does not degrade asymptotic
performance. We formalize RL safety with a safety-critical Markov decision pro-
cess (SC-MDP), which requires categorical, rather than high-probability, avoidance
of catastrophic failure states. Additionally, we define an associated filtered MDP in
which all actions result in safe effects, thanks to a safety filter that is considered
to be a part of the environment. Our main theorem establishes that (i) learning in
the filtered MDP is safe categorically, (ii) standard RL convergence carries over to
the filtered MDP, and (iii) any policy that is optimal in the filtered MDP—when
executed through the same filter—achieves the same asymptotic return as the best
safe policy in the SC-MDP, yielding a complete separation between safety enforce-
ment and performance optimization. We validate the theory on Safety Gymnasium
with representative tasks and constraints, observing zero violations during training
and final performance matching or exceeding unfiltered baselines. Together, these
results shed light on a long-standing question in safety-filtered learning and provide
a simple, principled recipe for safe RL: train and deploy RL policies with the most
permissive safety filter that is available.

1 Introduction

Reinforcement learning (RL) has demonstrated outstanding performance in complex domains, yet
a fundamental limitation is the lack of strict safety guarantees, both during policy training and
at deployment. This poses a major barrier to deploying RL in safety-critical applications, from
autonomous driving to healthcare management, where even a single safety violation would be
catastrophic. One promising approach towards safety assurances in RL is to integrate a safety filter [1]
that monitors the system and overrides any unsafe candidate actions to preempt downstream failures.
In effect, the RL agent can explore and learn within a safe set, while the filter ensures that it never
enters unsafe regions.

However, enforcing hard safety constraints during training is commonly observed to negatively
interfere with the learning process and limit the asymptotic performance achievable by the learned
policy [2-5]. In addition, prior studies on safety filtering in control systems [6—8] have reported that
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Figure 1: Our proposed framework for training and deploying optimal RL policies under safety
filtering. First, we train a filter-agnostic task policy in a safety-enforcing environment where every
action is passed through a safety filter. Then, we deploy the learned task policy with the same filter at
runtime. The filtered RL policy provably achieves the same asymptotic performance as it had been
trained with the safety constraints in mind.

if the task policy is unaware of the presence of a safety filter, it may repeatedly attempt unsafe actions
that keep triggering filter overrides, resulting in suboptimal oscillations or “chattering” behaviors. In
such cases, the separation between safety and performance is incomplete: the task policy must be
made explicitly aware of the task-agnostic safety filter in order to avoid costly overrides.

These concerns raise a fundamental, unsettled question in safe RL: Does safety filtering inevitably
hinder the agent’s learning and ultimately limit the achievable performance? We provide, for the
first time, a theoretical answer to this question by proving that no such entanglement between safety
filtering and task policy training is necessary to obtain an optimal constrained policy. We view this
as a new foundational result in safe RL, with significant practical implications as Al technology
advances towards increasingly complex autonomous systems.

Contributions. Our key insight is that safety and performance in RL can be learned separately
and still converge towards provably safe and task-optimal agent behavior. We prove that, under a
safety filter that is least-restrictive yet capable of preventing all safety violations, an RL agent trained
in the filtered environment converges to the optimal safety-constrained policy; in particular, the
convergence guarantees enjoyed by RL algorithms on stationary, discounted Markov decision process
(MDP)s with bounded rewards carry over to this setting [9—12]. Remarkably, we show—for the first
time—that the safety—performance separation is complete in safe RL: the task policy can be trained
entirely agnostic to the safety filter and still attain the same asymptotic performance as if it had been
trained with the safety constraints in mind. The safety filter guarantees that the agent never leaves the
safe set, wherein the RL algorithm, free of the extra burden of handling safety, optimizes the task
performance. To complement our theoretical findings, we empirically validate the safe RL principle
using the Safety Gymnasium benchmark [13], a modern successor to OpenAlI’s Safety Gym [14],
across different tasks, constraints, and environments.

2 Background and Related Work

Constrained reinforcement learning. Conventionally, RL methods model safety through a con-
strained Markov decision process (CMDP) [15], where the agent aims to maximize its return subject
to a budget on expected cumulative costs incurred in failure states. Prominent CMDP-based RL
approaches include trust-region methods such as Constrained Policy Optimization (CPO) [16],
Lagrangian/primal—-dual methods (including PID-Lagrangian stabilizations) [17], reward—penalty
variants such as Reward Constrained Policy Optimization (RCPO) [18], and Lyapunov-based pro-
Jected policy optimization [19]. Some methods depart from the standard CMDP formulation by
imposing a cap on expected cost at each individual time step [20] or considering risk measures like
conditional value-at-risk (CVaR) rather than expected costs [21]. While effective at enforcing some
statistical measure of safety, the above approaches generally permit failures along individual trajec-
tories. By contrast, our formulation considers truly safety-critical systems where catastrophic failures
are categorically unacceptable, and it consequently requires their probability to be exactly zero.'

'Our problem can be viewed as a non-generic limiting class of CMDPs where the allowable budget is exactly
zero, or costs are infinite. The opposite limiting class is MDPs, where the budget is infinite or costs are zero.



Safety filters. A safety filter is an automatic process that continually monitors an agent’s proposed
actions and, when necessary, modifies them to avoid entering no-win scenarios from which future
failures may be inescapable. These techniques are popular in robotics and control, where safety
is more often formalized as all-time satisfaction of state constraints [1]. Representative classes
include (i) model predictive safety filters (MPSFs), which verify system safety at runtime by forward-
simulating a dynamics model or solving a trajectory optimization problem [22-24], (ii) control barrier
function (CBF)-based filters, which perform runtime optimization at each control cycle to smoothly
slow down any approach to the boundary of a known safe set [25-28], and (iii) reachability-based
filters, which first solve a Bellman/Hamilton—Jacobi (HJ) equation to compute the largest possible safe
set and then keep the agent from exiting it at runtime [29, 30]. Recently, neural approximations of the
safety value function [31-33] have enabled scalable synthesis and deployment of reachability-based
filters beyond the reach of numerical tools, from robotic walking and manipulation to air traffic
control and high-speed car racing [34-38].

Safety-filtered reinforcement learning. In safety-critical settings, safety filters can be used during
and after RL training to detect and modify unsafe candidate actions before the agent executes them
in the environment. Although related, safety-filtered RL differs from shielded RL [39, 40]: shields
are synthesized over (finite-state) abstractions, whereas safety filters are defined directly on the
original (often continuous-state) MDP via controlled invariance. Prior works in safety-filtered RL
have adopted CBF safety filters not only to guarantee safety but also to guide learning by constraining
the set of explorable policies [41]; this idea also extends to robust CBFs that handle model uncertainty
and disturbances [42]. MPSF enforces constraints via short-horizon prediction during learning,
enabling zero or minimal violations in data collection and improved sample efficiency [8, 23, 24].
Reachability-based approaches include iteratively estimating the safe set (and sometimes a fallback)
to override unsafe proposed actions online [43], as well as provably safe action projection using
reachability analysis and polynomial zonotopes during training [44]. Across these lines, empirical
results report that RL under safety filtering improves exploration efficiency by preventing safety
violations and thus accelerates the convergence of task policies [8]. However, these works ultimately
fall short of providing optimality guarantees for the executed (filtered) policy with respect to the safety-
critical MDP. Recent works study optimality of RL under a safety monitor [45] or a safeguard [46],
concepts similar to safety filters; however, they do not characterize the maximal controlled-invariant
safe set, which prevents them from establishing that their safe RL algorithms result in optimal
asymptotic performance given a safety-critical MDP. We suspect it is this lack of a formal optimality
guarantee that contributes to the common misconception that safety filtering hinders the attainable
task performance of RL policies [2-5]. Our results fill this gap by showing that, under a sufficiently
permissive safety filter, the optimality of asymptotic task performance is preserved.

Safe model-based learning. Orthogonal to safety-critical model-free RL, a rich line of literature
focuses on learning (or refining) system dynamics models and certifying safety during training model-
based RL policies. SafeOpt [47] ensures safety while optimizing an unknown function modeled as a
Gaussian process (GP), using confidence bounds to assess the safety of unexplored decisions. In a
complementary direction, Akametalu et al. [48] propose to reduce safety filter conservativeness by
learning the system’s unknown dynamics, treated as a disturbance input, with a GP, and integrating
the relaxed safety constraints into RL. Similarly, Berkenkamp et al. [49] and Richards et al. [50] learn
Lyapunov certificates (and associated regions of attraction) from data and leverage them to enforce
safe exploration. Another line of work uses model predictive control (MPC) as the safety mechanism
around learned dynamics—typically via (i) uncertainty-aware prediction for tightened or chance
constraints, (ii) terminal conditions (invariant/robust sets and backups) for recursive feasibility, and
(iii) safety certificates (Lyapunov/barrier) to justify constraint satisfaction; see Hewing et al. [51]
for a comprehensive review. Koller et al. [5] couple a GP dynamics model with chance-constrained
MPC to enable high-probability safe exploration while improving the policy. In summary, these safe
model-based learning methods generally require a coarse dynamic model and an initial safe set with a
backup controller, rely on high-probability (not categorical) guarantees, face scalability limits due to
GP regressors, and the learned dynamics are often residual on top of a known structure. By contrast,
we focus on safe model-free reinforcement learning, which bypasses these modeling requirements
and directly learns task policies under safety filtering without relying on explicit dynamics models.



3 Problem Formulation

We study an RL agent operating in a stochastic environment subject to failure conditions that must
never occur. We formalize this setting in two complementary ways: (i) as a safety-critical Markov
decision process (SC-MDP), where only actions that keep the agent safe are allowed, and (ii) as
a filtered MDP, where a safety filter minimally intervenes to correct unsafe actions. These two
perspectives lay the groundwork for the theoretical result in the next section: an optimal policy
learned in the filtered MDP, and subsequently deployed with the same filter, achieves the same
asymptotic performance as the best policy in the SC-MDP. The assumptions we adopt in this
section to formulate the safety-critical decision-making problem and prove our theoretical results are
introduced in Assumption 1.

3.1 Safety-Critical Markov Decision Process

We consider an MDP defined by tuple M = (S, A, P, r,~y), where S is the state space, A is the
action space, P : S x A — P(S) is the transition probability, 7 : S x A — R is the reward function,
and 7y € (0, 1) is the discount factor. We denote F C S as the failure set encoding conditions deemed
unacceptable and must be strictly avoided at all times, formally defined as:

F={se8: g(s) <0}, (H

where g is a safety margin function representing F as its zero sublevel set.

Definition 1 (Safety-Critical MDP (SC-MDP)). An SC-MDP is a tuple Mgc = (S, A, P, r,~v,F).
For each s € S, Mg defines an infinite-horizon constrained optimal control problem:

Hlfr%X E Z'Yt""(staat) S0 = S, ag ~ 77(' | St), St41 ™~ P(' \ Staat) (2a)
t=0
s.t. Pr[s; ¢ F,Vt|so=s]=1, (2b)

where the task policy w is a stochastic kernel on A given S.

We now characterize what constitutes an admissible policy, i.e., one that satisfies the all-time safety
constraint (2b), by adopting the notion of set invariance [52]. Specifically, a controlled-invariant set
Q) C S guarantees the existence of a policy 7 that recursively keeps the state s within 2 for all time,
ie,Vs € Qand Va € suppn(- | s), suppP(- | s,a) C Q. Denoting Q* C S\ F as the maximal
controlled-invariant safe set, for each s € Q*, we define the safe action set as

Asate(s) ={a € A: suppP(- | s,a) CQ*}. 3)

Now, we define the admissible policy set as
Hsafe = {7(- : suppﬂ(' | S) g Asafe(s)a Vs € Q*} (4)

The admissible policy set I, is the largest set of policies that ensure all-time safety (2b) provided
that the system is initialized within 2* (see Proposition 1 for the proof). For an admissible policy
7 € Igate, we define its value on Mgc as
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Z ’}’tT’(St, at)

t=0

Vitse (s) =E

so =28, ar ~ (| st), Sp41 ~P(- ] st,at)] , 5)

and the optimal value as Vi, (s) := sup e, Vi (5)-

Remark 1 (Probabilistic and worst-case uncertainty). The SC-MDP unifies performance-centric
probabilistic uncertainty and safety-centric deterministic uncertainty within a single framework. In
contrast to conventional viewpoints that treat probabilistic and deterministic uncertainty as mutually
exclusive, we show that combining them is not only theoretically sound but also advantageous: it
achieves the best of both worlds—optimal expected task performance under strict safety guarantees.

Real systems are often designed around unknown-but-bounded uncertainty (e.g., external disturbances
and modeling errors), while facing hazards captured here by the failure set /. Many “safe RL”
benchmarks and baselines adopt the CMDP formalism [13, 14], in which the agent maximizes



expected return subject to an expected cumulative constraint budget. In that view, transient violations
are permitted as long as their expected cumulative constraint cost remains below the threshold. As a
result, CMDP formulations can still permit rare but catastrophic failures on individual trajectories,
which are unacceptable in safety-critical decision-making. This also conflicts with the spirit of
the operational design domain (ODD), which specifies conditions under which a system should
never experience a specified class of failures [1]; CMDP formulations generally do not provide
per-trajectory, failure-free guarantees under such conditions.

By contrast, the SC-MDP requires categorical avoidance of failure, yielding a zero-violation specifi-
cation by construction. It is robust to tail events while still leaving task performance optimized in
expectation. This allows engineers to delineate a clear operating envelope within which the system is
guaranteed to operate safely—supporting deployment, auditability, and public trust in automated
decision-making.

3.2 Filtered Markov Decision Process

To ensure that SC-MDP satisfies all-time safety constraint (2b), we leverage a safety filter—an
automatic process that monitors the agent’s decision-making and, when necessary, modifies the
nominal action in order to prevent safety violations. However, constraining the agent to an overly
restrictive invariant set may hinder the agent from achieving satisfactory task performance, i.e., to
accumulate high discounted rewards. Given the MDP M together with the maximal controlled-
invariant safe set Q*, we formalize a perfect (least-restrictive) safety filter [1] that enforces safety by
intervening if and only if the nominal action causes state s to immediately exit 2*.

Definition 2 (Perfect safety filter). A perfect (least-restrictive) safety filterisamap ¢ : S x A — A
such that, Vs € QF,

1. ¢(s,a) € Asate(8), Va € A,
2. ¢(s,a) = a, Va € Agage(5).

For safe RL, we now define the filtered MDP, where every action is passed through a perfect safety
filter before execution. This can be interpreted as a “bubble-wrapped” environment, where the agent
remains agnostic to the safety filter.

Definition 3 (Filtered MDP). The filtered MDP is a tuple My = (Q*, A, Py, 74,7), where ¢
is a perfect safety filter, Py(- | s,a) := ]P’(- | s, d(s, a)) is the filtered transition probability, and
re(s,a) = r(s, o(s, a)) is the filtered reward. For a measurable and stationary policy , we define
its value on M as
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and the optimal filtered value as V3, (s) := sup, Vi (s).

4 Safe Reinforcement Learning Theory

In this section, we present our core theoretical results. First, we show that learning in the filtered
MDP M is provably safe, and that the standard RL convergence guarantees remain intact. Second,
we prove that any policy that is optimal in M, when executed under the same filter at deployment,
is also optimal in the SC-MDP Mgc. To establish these results rigorously, we begin by stating the
technical assumptions required for our analysis.

Assumption 1 (Standing assumptions). We assume the following throughout this section:

1. (Spaces and measurability) S and A are Borel spaces. Q* is nonempty and closed. P(- | s, a)
and r(s, a) are Borel-measurable in their arguments.

2. (Safe initialization) All training episodes start in 2*.

3. (Stationarity and boundedness) P(- | s,a) and r(s,a) are time-invariant. Rewards are
bounded, i.e., sup, , |r(s,a)| < oc.



4. (Safety filter existence) A perfect safety filter ¢ (Definition 2) exists; ¢ is measurable and
time-invariant.

We are now ready to state our main theoretical result that formalizes the safety—performance separation
principle in safe reinforcement learning.

Theorem 1 (Safe and optimal RL under a perfect safety filter). If Assumption 1 holds, then the
following claims on the safety, convergence, and optimality of RL under safety filtering are true:

1. Safe learning. For any sequence of task policies produced by any RL algorithm during
training, the filtered trajectories remain in Q* for all time.

2. Convergence. Let ALG be an RL algorithm that converges on stationary discounted MDPs
with bounded rewards. Then, for any such MDP M, ALG also converges on the correspond-
ing filtered MDP M 4.

3. Optimality under safety filtering. Let 7 denote a measurable and stationary e-optimal
policy on M, possibly returned by ALG, for some € > 0:

Vag (s) > Vi, (s) —e, Vs eQ. %)

We define the executed policy Texec as the pushforward of mg, by the map a — (s, a); ie.,
for all Borel measurable sets B C A,

Texec(B | 8) =75 ({a € A: ¢(s,a) € B} | s), Vs € QF. (8)

Then, Texec is a safe e-optimal policy on Mgc:
ij;“‘c“(s) > Vigeo(5) — ¢, Vs € Q. Q)
Proof. The proof is deferred to Appendix A. O

Remark 2 (Safety with optimal performance). What Theorem 1 establishes. For any € > 0, any
e-optimal policy on the filtered MDP My induces, when executed through a perfect safety filter, a safe
e-optimal policy on the SC-MDP Mgc. Consequently, as an RL algorithm drives suboptimality on
My to zero (e.g., by sufficient exploration of state—action pairs and appropriate stepsize conditions),
the executed policy becomes asymptotically optimal on Mgc:

Jim (Vi (5) = Viizs () =0, ¥s €0,

Therefore, the safety—performance separation in RL is complete: enforcing safety with a sufficiently
permissive safety filter during task policy training does not degrade asymptotic performance.

Remark 3 (Practical recipe for Safe RL). Equivalence. Consider two ways to obtain a safe policy:

* Oracle safe RL benchmark: In the SC-MDP (Mgsc), choose any policy that is optimal
among those that never violate safety (i.e., those in gasc).

* Filter-based safe RL: Learn in a world where every proposed action is passed through the
safety filter (M), and pick any policy that is optimal there. At deployment in the SC-MDP,
run the learned policy through the same filter.

The two routines achieve the same long-run return on safe trajectories in the limit as the training
suboptimality on My vanishes (Remark 2).

Practical Recipe. Unlike the oracle safe RL, which cannot be realized by any practical algorithm,
filter-based safe RL offers an actionable framework as depicted in Figure 1: first synthesize a (task-
agnostic) safety filter for the SC-MDP, then train your task policy with any standard RL algorithm
while keeping the safety filter in the loop, and deploy the same policy—filter pair at runtime. The safety
filter needs to be computed only once for any number of task policies, provided that the transition
probability P and the failure set F stay the same. Crucially, under the perfect (least-restrictive) safety
filter assumption, this approach yields formal safety guarantees during both training and deployment
with asymptotic task performance identical to that obtained by training directly under hard safety
constraints. In practice, approximate yet sufficiently permissive filters can still dramatically reduce
(or eliminate) safety violations during training while matching or even surpassing the performance
of baseline constrained RL methods (see subsection 5.1).
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Figure 2: Top: environment components (Agent, Circle, Pillars, Goal, Walls). Bottom: example
scenes for the two tasks from Safety Gymnasium [13]. We use the Car agent across all experiments.
Circle task: the agent aims to track the green circle’s boundary as fast as possible while remaining
inside the square wall; safety is violated by crossing the wall. Goal task: the agent navigates to a
fixed green goal while avoiding the pillars and staying inside the wall; safety is violated by crossing
the wall or colliding with a pillar. In both tasks, the agent is randomly initialized inside the wall and
away from the pillars and the goal.

S Experiments

To empirically validate our theoretical results, we build on the Safety Gymnasium benchmark [13], a
modern successor to OpenAl’s Safety Gym [14]. Safety Gymnasium provides a unified reinforcement
learning environment for evaluating different training algorithms, emphasizing safety-critical tasks
with standardized metrics. Importantly, it retains the original design philosophy of Safety Gym:
testing whether agents can train an optimal task policy without sacrificing safety during training,
with enhanced environment and task diversity, simulation fidelity, and compatibility with modern RL
training pipelines such as Stable-Baselines3 [53]. By situating our experiments in this benchmark,
we ensure that our evaluation (i) directly validates the safety—performance separation as stated in
Theorem 1, (ii) is grounded in a standardized and widely used testbed for constrained RL, and
(iii) provides consistent results across diverse tasks and environments. We expect that our safe RL
framework will serve as a state-of-the-art baseline for future work on safe reinforcement learning;
because it is directly deployable within the Safety Gymnasium benchmark, it can be used out of the
box to conveniently evaluate and compare new methods.

5.1 Experiment Setup

In this section, we introduce the setup of our experiments, including the agent, environment, safety
filters used for training and deployment, and baseline comparisons. Full details of the experimental
setup, including model architecture, safety specifications, and filter implementation, can be found in
Appendix B.

Agent. We use the Car agent from Safety Gymnasium. It has continuous control inputs and is
implemented as a differential-drive platform with two independently driven parallel wheels and a
free-rolling rear wheel, exactly as provided in the benchmark suite [13, 14].

Tasks, rewards, and safety constraints. We evaluate safe RL with the following representative tasks
from Safety Gymnasium [13], each with distinct reward functions and safety constraints.

* Goal: The robot navigates to a fixed goal position while avoiding contact with cylindrical
obstacles and remaining inside a square wall (see Figure 2). Specifically, the reward is
proportional to the decrement of the distance between the robot and the goal over a single



timestep, and an additional reward is provided when the robot reaches the goal. The robot is
constrained within a square wall that contains four cylindrical obstacles (i.e., pillars); the
position of the square wall and the pillars remain fixed. Crossing the square wall or colliding
with a pillar is considered a safety violation. The robot is randomly initialized inside the
square wall, sufficiently far from the pillars and the goal.

* Circle: The robot aims to track the boundary of the green circle as fast as possible while
remaining inside a square wall (see Figure 2). Specifically, the reward function consists
of two factors: (i) a tracking reward that increases as the robot stays closer to the circle
boundary, and (ii) a velocity factor that rewards larger tangential velocity along the circle.
The robot is constrained within a square wall with a fixed position; crossing the wall is
considered a safety violation. The robot is randomly initialized inside the square wall.

Safety filters. We use two types of safety filters in our experiments: one with value-based monitor-
ing [1, Section 3.1] and the other with rollout-based monitoring [1, Section 3.3]. For both filters, we
learn a best-effort fallback policy and the associated safety value function with model-free, RL-based
HIJ reachability analysis [31, 38]. Specifically:

* Value-based filter queries, at each timestep, the learned value function to determine whether
the current state is safe. If the proposed action sampled from the task policy is deemed safe,
we execute it; otherwise, we override it with the best-effort safety fallback.

* Rollout-based filter simulates, at each timestep, a state trajectory based on a proposed
action sampled from the task policy, followed by a series of actions from the best-effort
fallback policy for a fixed horizon. If the state reaches a known terminal safe state (or
controlled-invariant safe set) within that horizon, we may execute an action sampled from
the task policy; otherwise, we apply the safety fallback action.

While a valid (resolution-complete) safety filter with value-based monitoring can be obtained by
solving the safety Bellman equation with dynamic programming (DP) [30], this method does not scale
to more than 6 continuous state dimensions. Therefore, we adopt RL-based reachability analysis to
obtain neural approximations of a perfect safety filter for our experiments, which is, to the best of our
knowledge, the only purely model-free method that scalably approximates the maximal controlled-
invariant safe set and a fallback policy using a simulator. This makes RL-based reachability analysis
the best-suited safety filter synthesis method for Safety Gymnasium benchmark, which provides more
than 40 continuous observation dimensions and no information regarding the system dynamics. In
subsection 5.2, we show empirically that despite the lack of formal guarantees, a value-based neural
safety filter can significantly reduce the frequency of safety violations during training. Furthermore,
the rollout-based monitoring, unlike the value-based counterpart, leads to a provably valid safety
Silter for the benchmarking tasks in Safety Gymnasium, since coming to a stop is a known terminal
safe state for the Car agent. Indeed, as shown in subsection 5.2, this approach achieves zero safety
violations. Moreover, the task policies trained under both filters converge to the same—and, in some
cases, higher—episodic return when compared to the baselines.

Baselines. We compare against two baselines for constrained RL:

* CPO [16]: The agent optimizes its return subject to a budget on the environment’s constraint
costs. We use the same implementation provided by Safety Gymnasium exactly as released.

 Standard soft actor—critic (SAC): The agent optimizes its return with no explicit constraints
or costs other than episode termination, which occurs immediately after a safety violation.
Because episode termination prevents the agent from accruing positive rewards in the future,
this setup implicitly encourages the agent to learn policies that satisfy the safety constraints.
This is a commonly used heuristic for RL under soft safety constraints [38, 54].

RL algorithms. All task policies are trained with SAC [12] (except the CPO baseline) using the
Stable-Baselines3 [53] implementation. Training budgets (environment steps per run), model capacity,
and evaluation protocols are kept identical across all methods to ensure a fair comparison.

Reproducibility. Each method is run with five independent random seeds. We report the mean
and standard error across seeds under a fixed training step budget and a shared evaluation protocol
(periodic evaluation episodes with safety violations and episodic returns logged). All code and
experimental scripts necessary to reproduce our results will be publicly released upon publication.



Goal Task Circle Task

2 20
148 SAC w/ Rollout Filtering
—— SAC w/ Value Filtering 132
c —— CPO(X: converged)
p=]
2 0 —— Standard SAC
i
£
©
'_
0 o=
2 -2
0 5 10 0 75 15
4 20
c 0.90 13.4
3
Fol/—/——— ——
i
c
Ee]
©
3
3
8 4
0 5 10 0 75 15
100 90 200 1900
(%]
c
k]
3 50 100
=
s
(o]
= I
0 violations 0 violations
0 £ 0 X
0 5 10 20 0 7.5 15 200
Environment Steps (x10%) Environment Steps (x10%)

Figure 3: Experimental results on the Goal (left) and Circle (right) tasks in Safety Gymnasium. We
compare our safe RL framework, implemented with an SAC-based task policy and a neural safety
filter with rollout- and value-based monitoring, against CPO and standard SAC baselines. Top: mean
episodic training return versus the number of environment steps. Middle: mean episodic evaluation
return versus the number of environment steps. Botfom: cumulative safety violations versus the
number of environment steps. Our method achieves zero safety violations when using a valid
(rollout-based) safety filter while converging to the same or higher return than the baselines. Even
with an error-prone approximate (value-based) filter, the number of safety violations is significantly
reduced compared to the baselines.

5.2 Results

In this section, we report results in training task policies under a value-based filter and a rollout-based
filter, and compare them to the baselines. Specifically, we focus on (i) safety violations during task
policy training, (i) convergence of the RL algorithm, and (iii) optimality of the trained task policy.

Safety during RL training. The number of safety violations accumulated up to a given environment
step during task policy training is shown in the last row of Figure 3. Remarkably, our rollout-based
filter recorded zero safety violations in both tasks across five random seeds. This is expected since
the rollout-based filter is a valid safety filter with strict guarantees, and it directly supports our
theoretical claim of safe learning in Theorem 1: given a valid safety filter, system trajectories
remain safe throughout task policy training. Although our value-based filter produced a non-zero
violation count due to neural approximation error, it nevertheless resulted in fewer violations on
both tasks compared to the two baselines. Standard SAC incurred the second-most violations on
the Goal task and the most on the Circle task. We also observe that the cumulative violation curves
plateau with training, indicating that although standard SAC cannot enforce safety during training,
the learned task policy increasingly avoids violations as the algorithm converges. CPO recorded the
most total violations on Goal and the second-most on Circle. For completeness, we additionally mark
CPO’s post-convergence metric (symbol “x” in Figure 3), since CPO converges much later than the
other methods. Our primary comparisons, however, use counts at a common training budget—100k
environment steps for Goal and 150k for Circle—for all methods.



Convergence of RL training under safety filtering. From Figure 3, we conclude that SAC under
both rollout- and value-based filtering, as well as standard SAC, converged well within our training
budget. For these three methods, the episodic training return and the evaluation return plateau within
the budget on both tasks, and the variance of these metrics remains very small across seeds, indicating
convergence over repeated runs. This supports our theoretical claim of convergence in Theorem 1: if
an RL algorithm converges on an (unconstrained) MDP, then the same algorithm converges on its
filtered counterpart. By contrast, CPO takes significantly more environment steps to converge, and its
episodic returns exhibit substantially larger variance than the other filtered RL methods.

In the Circle task, we observe that training under the rollout-based filter converges substantially
faster (in environment steps) than the other methods. This acceleration is consistent with prior
reports that safety filtering improves sample efficiency by pruning unsafe exploration [8, 23, 24]. A
plausible explanation is task geometry and reward shaping: Circle rewards encourage high tangential
speed while staying close to the circle boundary, which lies inside the square wall. Pushing for
higher reward inevitably increases the chance of wall contact under unconstrained exploration; the
rollout-based filter preemptively removes those unsafe proposals, concentrating data on productive
(safe) trajectories and speeding convergence. By contrast, the effect is less pronounced in the Goal
task. Depending on the random initialization, a shortest path to the goal can often avoid obstacles and
the wall even without interventions, so there is less unsafe exploration to prune. Consequently, while
the safety filter still prevents violations, the gain in exploration efficiency—and thus in convergence
rate—is smaller on Goal than on Circle. Characterizing and optimizing the convergence rate for
reinforcement learning under safety filtering is beyond the scope of this paper and remains an
important direction for future work.

Performance of the task policy. As shown in Figure 3, on both tasks the policies trained under
rollout- and value-based filtering attain final performance that matches—or exceeds—standard SAC
and CPO. This empirically supports our most significant claim of optimality under safety filtering
(Theorem 1, Remark 2): enforcing safety with a sufficiently permissive safety filter during training
does not degrade the asymptotic performance. In the Goal task, training under rollout- and value-
based filtering yields nearly identical episodic training and evaluation returns, while CPO achieves
a substantially lower return under the same training budget. As a sanity check, we run CPO until
convergence and observe that its return eventually matches that of the other methods. In the Circle task,
training with the rollout-based filter achieves significantly higher return than both the value-based filter
and standard SAC; CPO records little meaningful return within budget and, even post-convergence,
reaches a level comparable to value-based filtering and standard SAC, yet still below the policy
trained with the rollout-based filter. Taken together, these results demonstrate that task policy training
under safety filtering attains the same (and, in some cases, higher) task performance as unconstrained
baselines, providing concrete empirical evidence for the safety—performance separation in safe RL.

6 Conclusion

In this paper, we have established formal convergence and optimality results for reinforcement learn-
ing under safety filtering (safe RL). Our theoretical analysis proves that, under an idealized safety
filter that is minimally restrictive yet capable of preventing all unsafe actions, reinforcement learning
achieves complete safety—performance separation, yielding the same asymptotic performance as
direct optimization under hard safety constraints. This result resolves a longstanding misconception
in reinforcement learning that enforcing safety inevitably limits the agent’s attainable performance.
It shows that safety filtering provides a principled mechanism for maintaining both formal safety
guarantees and optimal long-term behavior in RL, independent of the specific RL algorithm used
for optimizing task performance. Empirical validation on Safety Gymnasium benchmarks further
supports our theory, demonstrating that, in practice, the proposed safe RL framework achieves zero
safety violations with a valid safety filter, while converging to a policy that matches or surpasses base-
line performance. Taken together, these findings provide a rigorous paradigm for safe reinforcement
learning: learn your safety filter once, train any RL algorithm with the filter in the loop, and deploy
the same filter—policy pair to achieve strict safety and optimal performance in tandem.
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A Theoretical Results and Proofs

Lemma 1 (No all-time safety outside the maximal invariant set). Let Q* C S \ F be the maximal
controlled-invariant safe set. Then, for any stationary policy ™ and any s € Q*° N (S \ F),

P}g}[stgé]-',w‘so:s} < L

In words, starting outside 0¥, no stationary policy can satisfy the all-time safety constraint with
probability 1.

Proof. We prove by contradiction. Assume there exists s € Q*° N (S \ F) and a stationary policy 7
such that Pr, p[s; ¢ F, Vt | so = s] = 1. Define

R, = {xeS\f3 ££[5t¢f7Vt|30:x]:1}'

By the Markov property, if x € R, then the set of next possible states rendered by 7 and P should
be a subset of R.. More formally, for all @ € suppn(- | ), suppP(: | z,a) C R,. Thus, R, isa
controlled-invariant subset of S \ F under 7, and since there exists s € R, \ Q*, the set Q* UR, is a
strictly larger controlled-invariant safe set than €2*. This contradicts the maximality of 2*. Therefore,
no such s exists. O

Proposition 1 (Maximality of the admissible policy set). Let Q* C S\ F be the maximal controlled-
invariant safe set, and define Asaze(s) := {a € A:suppP(- | s,a) C Q*} forall s € Q*. Consider
the set of measurable, stationary policies

Igate := {77 : Suppﬂ-(' | 3) - -Asafe(s)a Vs € Q*}

Then 1,4 is the largest collection of policies that satisfy the all-time safety constraint from every
initial state in Q2*.

Proof. (Isate policies are admissible.) Let w € Tlgaf.. For any s € Q* and any a € supp (- | s), we
have supp P(- | s,a) C Q*. By induction, we get Pr, p [st ¢ F,Vt|sg= s] =1.

(Policies not in Mg,se are not admissible.) Let w ¢ Ilgap.. Then there exist s € Q* and a € supp (- |
s) such that a ¢ Agase(s), so suppP(- | s,a) € Q*. Hence, with positive probability, the next state
rendered by 7 and P lies in Q*°. By Lemma 1, the overall probability of ever entering F starting
from s under 7 is positive. Thus 7 violates the all-time safety constraint from s.

Maximality of Ilg,¢ follows immediately: any stationary policy assigning positive mass to an action
outside Agaso(s) at some s € Q* cannot satisfy the all-time safety constraint from that state. ]

Theorem (Restatement of Theorem 1). If Assumption I holds, then the following claims on the safety,
convergence, and optimality of RL under safety filtering are true:

1. Safe learning. For any sequence of task policies produced by any RL algorithm during
training, the filtered trajectories remain in Q* for all time.

2. Convergence. Let ALG be an RL algorithm that converges on stationary discounted MDPs
with bounded rewards. Then, for any such MDP M, ALG also converges on the correspond-
ing filtered MDP M 4.

3. Optimality under safety filtering. Let 7 denote a measurable and stationary e-optimal
policy on My, possibly returned by ALG, for some € > 0:

Vae (s) > Vi, (s) —e, Vs eQ.

We define the executed policy Texec as the pushforward of 73, by the map a — o(s,a); Le.,
for all Borel measurable sets B C A,
Texee(B | s) =75 ({a € A: ¢(s,a) € B} | s), Vs € Q.
Then, Toxec is a safe e-optimal policy on Mgc:
Viizee(s) > Vigeo(s) — ¢, Vs e Q.
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Proof. (Safe learning) Since all training episodes begin in Q* (Assumption 1) and ¢(s, a) renders
Q* invariant for all ¢ € A produced by any task policy (Definition 2, Assumption 1), all filtered
trajectories remain in Q* for all time.

(Convergence) From Assumption 1 and Definition 3, both P4 and r are time-invariant and 74 is
bounded. Thus, the filtered MDP M is a stationary discounted MDP with bounded rewards. The
iterates of ALG depend only on the executed tuples

(S¢yae,7e,8e41) With 1y =r(se,ar),  Se41 ~ Pyl | s¢,at),
and on the stepsize/exploration schedule of ALG. Every step in the convergence proof of ALG on M
applies to M 4 with the substitution (P, 1) + (IPy, r¢). Therefore ALG converges on M 4. This carry-
over presumes the same algorithmic side conditions—e.g., stepsize conditions and ergodicity/coverage
under the executed policy—also hold in M. It covers, for example, almost-sure convergence of

tabular Q-learning [9, 10], two-timescale actor—critic [11], and soft policy-iteration convergence for
SAC [12].

(Optimality under safety filtering) We begin with showing the equivalence between Vf\k/td, and Vi .

We define the optimal Bellman operators for the filtered MDP My and the SC-MDP Mg, respec-
tively:

(Tx, V)(s) = aSIElB{w (5,0) + YEgnp,(1s.a) [V (5] }

= ; ; + ES’N ‘|s,0(s,a V(s )
sup{r(s,9(5,0)) + 7 EwrinstaanlV ()]}

(TiaeeV)s) = sup {r(s,0) + 7 Egn(ow V()] ]
CLEAsafe(s)
From Definition 2, the image of the map a — ¢(s, a) is exactly Agaz.($) and ¢ is the identity on
that image. Taking the supremum over a € A post-composition by ¢ equals the supremum over
a € Agafe(8). Therefore, we have

Ta, = Tatse pointwise on .
Since both operators are y-contractions on (B (£2*), | - ||cc)—the Banach space of bounded Borel-
measurable value functions V' : Q* — R endowed with the sup norm—they have the same unique

fixed point:
Vi, (8) = Vigee (9), Vs € Q.

We now show the equivalence between V;f and V/Cfé‘zc. We unroll the expectation and apply the
definition of the filtered MDP M, (Definition 3):

oo
Vi, () =B v ro(si,ar) | so =15, ar ~ 75| 81), serr ~ Pyl | st, at)]
t=0

=E

Z ,.yt T(St, ¢(8t7 at))
t=0

Let a; = ¢(s¢,ar), where a; ~ w;( | s¢). The executed policy Texec is defined as the pushforward
of the e-optimal policy 75 by the map a — ¢(s, a). Therefore, Gt ~ Texec(- | 5¢), and we have

s0 =15, ag ~ (- | 8¢), seq1 ~ P(- | St,¢(3t7at))] .

oo
V/\ZZ(S) =E Z’ytr(st,&t) 80 = 8, At ~ Texec(" | 8t), St41 ~ P(- | St;at)]
=0

= Ve (s), Vs € QF.

By the perfect safety filter property (Definition 2) and the pushforward definition of 7eyec, We have
SUPP Texec(* | 8) C Asate(s) for all s € Q*. Therefore, Texee € Hsafe, and this gives

Vieee(s) = Ve (s), Vs € Q.
Finally, combining the equalities yields

Viizee(s) = VM“; (s) > Vj‘/l(ﬁ(s) —e=Vi.(s) —¢, Vs € QF.
This proves the e-optimality and the safety of mexec 0N Mgc. O
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B Implementation Details

Model architecture. The SAC task policy and safety policy have the same architecture, with the
actor and critic policies implemented by a fully connected feedforward neural network with 2 hidden
layers of 256 neurons. The CPO task policy has 2 hidden layers of 64 neurons. All policies use ReLU
activations for SAC-based architectures and Tanh activations for CPO.

The safety policy is trained with a learning rate 1 x 1075, replay buffer size of 2 x 105, batch size of
256, discount factor v = 0.995, and soft update coefficient 7 = 0.01, for a total of 2 x 109 steps.

The task policy SAC is trained with a learning rate 3 x 10~%, replay buffer size of 1 x 10°, batch
size of 256, v = 0.99, and 7 = 0.01.

The CPO policy is trained with a learning rate of 3 x 104, v = 0.99, and KL-divergence step size
of 5KL = 0.01.

Safety filter implementation. For rollout filtering, we adopt the rollout evaluation procedure
described in Nguyen et al. [34]. We use a finite rollout horizon of H = 100 and define the target
margin function /(s) and stop policy myop as

I(s)=n— /024 vf/, Tgop(a | 5) =0

where 7) denotes the target safety velocity threshold. Although the safety policy was not explicitly
trained to bring the robot to a complete stop, it implicitly learned to reduce the robot’s velocity near
obstacles, either by slowing down to a complete stop or rotating in place until the obstacles are out
of sight. This emergent behavior motivates the design of the above target margin function and stop
policy as the fallback policy when I(s) > 0. We choose 77 = 0.01 in our experiments.

For value-based filtering, we run the experiment across a sweep of ¢ values, and choose the € with the
highest return and lowest total violations. Specifically, we choose €goa1 = 0.4, and €cirele = 0.1.

State and action spaces. The Circle task and the Goal tasks each employ ego-centric proprioceptive
observations, consisting of accelerometer, velocity, angular rate, magnetic field, rear ball rotation,
and local LiDAR readings. The observation space has 40 and 72 dimensions, respectively, while the
continuous action space is similar across both tasks:

L ; ; ; (3%3)  pgoal pillar  pwall
SGoal *= {any,zwny,zv Wa,y,2: Ma,y,z bzry byr, bzr, QGr RTIR ST TRARTIE
L ; ; ; (3x3)  gsigwall
SCircle *= [ax,y,zavm,y,zy We,y,zs My, 2 bx,raby,rvbz,ru qb,r ) £1;16 )

a = {TL,TR},

where (ag,y ), (Vg,y,2), and (wy , ) denote accelerometer, velocimeter, and gyroscope readings;

(Ma,y,~) the magnetometer readings; l}(.),r the rear ball angular velocity; qé?’rxg) the rear ball orien-

tation matrix; and ¢ 5':)16 the 16-beam LiDAR signals for different object classes (goal, wall, pillar).
The action vector a = |11, Tr] applies continuous torques to the left and right wheels, each bounded
within [—1, 1].

pillar _ wall

Goal task margin function. Let 2}, 2} € [0, 1] denote 16-beam LiDAR proximities (1 = very

close, 0 = far) for pillars and walls, respectively. With LIDAR max range R > 0 and safety clearance
6 > 0, convert to distances

dgillar — (1 _ Zfillar) R, d\zgvall _ (1 _ Z;}vall) R,

and define the minimum distance to safety-critical objects

dmin(s) = min { d?mar, dy }
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The margin is

ggoal(s) = dmin(s) — 0.
In our experiments we use R = 3.0m and 0 = 0.02m. The episode terminates if ggoa(s) < 0 or
upon explicit collision.

Circle task margin function. Let (s) € R? be the robot planar position and W = {W},} the set of
signal-wall line segments (axis-aligned). Define the point—segment distance

d(z, W) = prélli/%c |l — p||2, dmin(s) = m’jnd(x(s),Wk).

The margin is
gcircle(s) = dmin(s) — 0.

We use R = 6.0m and § = 0.02 m. The episode terminates if geirele($) < 0 or upon explicit collision.
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